
Math 141: Calculus II
Final Exam Revision Guide

Exam Date: Tuesday, December 11th 14h00

1 Things we should’ve remembered from Calculus I....

5 Integrals
Main idea: you can approximate areas under a curve using rectangles. As the number of
rectangles increases, the approximation becomes more accurate. So, if you take the limit as the
number of rectangles tend to infinity, you obtain a precise measurement of the area bounded
by a curve. This infinite limit can be expressed as an integral.

5.1 Areas and Distances

Definition 5.1. Area → the area of the region S lying under a continuous function f is the
limit of the sum of the areas of the approximating rectangles.

A = lim
n→∞

[f(x0)∆x+ f(x1)∆x+ ...+ f(xi)∆x]

5.2 The Definite Integral

Definition 5.2. Definite integral → if f is a function defined for a ≥ x ≥ b, we sub-divide
the interval [a,b] into n sub-intervals of equal width:
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• ∆x = b−a
n

• a = x0
• b = xn
• The Definite integral of f from a to b is:∫ b

a

f(x)dx = lim
n⇒∞

n∑
i=1

f(x∗i )∆x (1)

• The integral measures the area captured between the function, f(x), and the x-axis.
• For areas above the x-axis, this is registered as positive.
• For areas under the x-axis, this is registered as negative.
• So, the integral measures the net area of a function.

Theorem 1 (Riemann Sum And Integral Connection). The connection between integrals and
Riemann sums is as follows: ∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x)∆x (2)

Where

∆x =
b− a
n

xi = a+ i∆x

Rules for evaluating sums (summation rules):

Power of i Sum formula∑n
i=1 i

n(n+1)
2∑n

i=1 i
2 n(n+1)(2n+1)

6

5.3 Fundamental Theorem of Calculus

Motivation: establishes a connection between the two branches of calculus: differential calcu-
lus and integral calculus. The main idea:

• Differentiation and integration are inverse processes.
• There are two parts to the theorem.

Theorem 2 (Fundamental Theorem of Calculus Part 1). (1) If we first integrate f then differ-
entiate the result, we return to the original function f . (2) If f is continuous, then the integral
can be interpreted as the “area so far” function:

g(x) =

∫ x

a

f(t)dt, x ∈ [a, b] (3)

Theorem 3 (Fundamental Theorem of Calculus Part 2). If f is continuous on [a,b], then∫ b

a

f(x)dx = F (b)− F (a)

where f(x) is any anti-derivative of F(x).

Remark: if the limits of integration are expressed in terms of functions, then we obtain the
following: ∫ b(x)

a(x)

f(x)dx = a′(x)f(a(x))− b′(x)f(b(x)) (4)
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5.4 Indefinite Integrals and the Net Change Theorem

Integrals to memorize! Do not forget the +C constant.

Theorem 4 (Net Change Theorem). The integral of a rate of change is the net change. This
is because: ∫ b

a

F ′(x)dx = f(b)− f(a)

Remarks

1. If you are asked to compute the total area under a curve, then you need to integrate the
absolute value of the function to avoid subtracting “negative area.”

5.5 Substitution Rule

Motivation: if the integral is complicated, then you can substitute in other variables to turn
a relatively complicated integral into a simpler integral.

1. We can accomplish this by changing from the original variable x to a new variable, u,
that is a function of x.

2. If you are given a definite integral, then it is useful to change the limits of integration
whenever you make a substitution.
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The Substitution Rule: if u = g(x) is a differentiable function whose range is an interval I
and is continuous on that interval I, then∫

f(g(x)) · g′(x)dx =

∫
f(u)du (5)

Note that the substitution rule is the “inverse” of the chain rule from Calculus I.

5.5.1 Symmetry

Integrating symmetric integrals can be really simple:

• If f is even (that is, f(−x) = f(x), then∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx (6)

• If f is odd (that is, f(−x) = −f(x), then∫ a

−a
f(x)dx = 0 (7)

6 Applications of Integration

6.1 Area Between Curves

Motivation: by taking differences of areas under curves, we can compute the area between
two curves. This is useful for determining volume later on.

Definition 6.1. Area → the area A of a region S bounded by the curves y = f(x) and
y = g(x) and the lines x = a and x = b is given by

A =

∫ b

a

(|f(x)− g(x)|)dx (8)

This formula is doing nothing more than taking the area between the upper curve and the
x-axis, and subtracting the area between the lower-curve and the x-axis.

Remark 6.1. If it easier to integrate the inverse of the functions that you are given (that is,
if the functions are easier expressed as a function of y, then the formula is basically the same,
except the variable of integration is different:

A =

∫ d

x

(|f(y)− g(y)|)dy

6.2 Volumes

Motivation: using the idea that we can compute the area between two curves, the volume of
a region formed by revolving lines about certain axes or lines can be obtained by treating each
cross-sectional area formed as a sort of “Riemann sum”, and taking the limit as the number of
cross-sectional areas tend to infinity. Visual representation:
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Then, volume is nothing else than the integral of the area from the lower bound of the object
to the upper bound of the object:

V (x) =

∫ b

a

A(x)dx

How do we obtain A(x)?
There are two general methods: cylindrical shells and the washer method.

6.2.1 Washer Method

The washer method computes areas by determining solids of revolution, which are solids
obtained by revolving a region about a line. Visually, it looks like this:

If the cross-section is a disc (no hole in the middle), then the volume is given by:

V (x) =

∫ b

a

[π(r2)]dx (9)

Where r is given by the value f(x) if the area is in terms of x or f(y) if the area is defined in
terms of y.

If the cross-section is a washer, then the volume is given by:

V (x) =

∫ b

a

(π[r2outer − r2inner])dx (10)
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6.3 Volumes by Cylindrical Shells

Motivation: we use this method when it is easier to obtain the volume of a solid by rotating
about the y-axis. Instead of summing infinite discs or washers, cylindrical shells sums up infinite
cylinders. Main idea: this method approximates area with a bunch of cylinders by taking the
limit as the number of cylinders tends to infinity. Visually, it look like this:

The area would then be given by:

V (x) =

∫ b

a

2πxf(x)dx (11)

Intuitively, this means

6.4 Average Value of a Function

Motivation: we can actually use integrals to calculate the average value of infinitely many
observations.

Definition 6.2. Average value → the average value of f on the interval [a,b] is given by

fave =
1

b− a

∫ b

a

f(x)dx (12)

Something that’s closely related to this is the mean value theorem for integrals. It is:

Definition 6.3. Mean Value Theorem for Integrals → if f is continuous on [a,b], then
there exists a number c in [a,b] such that:

f(c) = fave =
1

b− a

∫ b

a

f(x)dx or, alternatively, (13)∫ b

a

f(x)dx =f(c)(b− a) (14)
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Visually, this means:

• For a positive function f , there is a number c such that the rectangle with base [a,b] and
height f(c) has the same area as the region under the graph f from a to b.

7 Techniques of Integration

7.1 Integration by Parts

Motivation: each differentiation rule has a corresponding integration rule:
1. Substitution rule corresponds to the chain rule.
2. Integration by parts corresponds to the product rule.

The integration by parts formula is given by:∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx (15)

Some tricks to remember when using this technique
• Use cyclic integration when you see that you have ex and sine or cosine.
• Sometimes, you need to use multiple iterations of the rule to obtain something useful/easy

to integrate.
• Choose f(x) to be a function that does not get more complicated when you take the

derivative and g(x) to be a function that is easy to integrate. In general, this usually
means that you set f(x) to be the polynomial if there is one in the integral.

The formula to evaluate a definite integral using integration by parts is given by:∫ b

a

f(x)g′(x)dx =

[
f(x)g(x)

]
−
∫ b

a

f ′(x)g(x)dx (16)

7.2 Trigonometric Integrals

Motivation: two strategies will be introduced: one for evaluating
∫

sinm(x)cosn(x)dx and one
for evaluating

∫
tanm(x)secn(x)dx. Here, trig identities are absolutely integral to solving the

problems, so here’s what’s essential to know:

sin2(x) =
1

2
(1− cos(2x)) (Half-Angle) (17)

cos2(x) =
1

2
(1 + cos(2x)) (Half-Angle) (18)

sin2(x) + cos2(x) = 1 (Pythagorean - also know the alternate forms) (19)
sec2(x) = 1 + tan2(x) (alt. form of pythagorean) (20)
sin2(x) = 2 sin(x) cos(x) (Double-angle) (21)
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Product Identities

sin(A) cos(B) =
1

2
[sin(A−B) + sin(A+B)]

sin(A) sin(B) =
1

2
[cos(A−B)− cos(A+B)]

cos(A) cos(B) =
1

2
[cos(A−B) + cos(A+B)]

Case 1: different powers of sine and cosine

Case 1.1: the power of cosine is odd
Then: save 1 cos(x) factor to obtain an even power of cosine. Use the pythagorean identity to
express the remaining terms in terms of sin(x).

Case 1.2: the power of sine is odd
Then: save 1 factor of sin(x) to obtain an even power of sine. Then, use the pythagorean
identity to express the remaining terms in terms of cos(x).

Case 1.3: the powers of sine and cosine both are even
Then: use the half-angle identities or the double angle identity to simplify the integral. Then,
attack the problem with u-substitution or another known strategy.

Case 2: different powers of tan and sec

Case 2.1: the power of secant is even
Then: save a factor of sec2(x) and use the pythagorean identity (alternative) to express the
remaining factors in terms of tan(x).

Case 2.2: the power of tangent is odd
Then: save a factor of sec(x) tan(x) and use the pythagorean identity (alternative) to express
the remaining factors in terms of sec(x).

Case 2.3: else
Not so clear-cut here. Might have to use identities, integration by parts, etc. So, memorize the
integrals of tan(x) and sec(x):∫

tan(x)dx = ln(| sec(x)|) + C

∫
sec(x)dx = ln(| sec(x) + tan(x)|) + C (22)

Case 3: trigonometric products
Integrals of this form:

∫
sin(mx) cos(nx)dx,

∫
sin(mx) sin(nx)dx, or

∫
cos(mx) cos(nx)dx. Then,

use the product identities in the beginning of the section to simplify the integral, then integrate
it like a regular integral.

7.3 Trigonometric Substitution

Motivation: “the worst part.” We need to use this technique when we are dealing with finding
areas of discs or ellipses, which are in the form of∫ b

a

√
a2 − x2dx

We cannot integrate this using other methods, so we use trigonometric substitution. It’s
algorithmic:
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1. Make a substitution in the form of x = g(t). Need to restrict the domain of g to ensure
that it’s one-to-one (so we can obtain an inverse).

(a) The goal is to obtain an integral of the form:∫
f(x)dx =

∫
f(g(t))g′(t)dt

(b) Make an appropriate substitution based on the expression under the square root.
Precisely,

(c) If the integral is definite: change the corresponding limits of integration to avoid
using the triangle method.

2. Integrate the simplified expression. If it’s definite, then evaluate the expression at the
new limits of integration. Then, you’re done. Else, move on.

3. Triangle method: draw a right triangle to determine the original value of x, and undo
the substitution to obtain the original variable of integration, x.

4. Do not forget the +C.

7.4 Integration of Rational Functions by Partial Fractions

Motivation: finding a way to integrate a function that is expressed as a ratio of polynomials.
This is done by breaking the fraction down so that it’s the sum of simpler fractions.

The way that a polynomial ratio is divided into simpler ones is based on the nature of the
denominator. Four cases:

1. The denominator is a product of distinct and linear factors, meaning that there are no
repeated factors and that none of the factors are constant multiples of each other.

2. The denominator is a product of linear factors, some of which are repeated.
3. The denominator contains irreducible quadratic factors, none of which are repeated.

• Test for irreducibility: when the following inequality is true:

b2 − 4ac < 0

4. The denominator contains a repeated, irreducible quadratic factor.

How to do it. Say we have the following polynomial

f(x) =
P (x)

Q(x)

Then:
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1. Compare the degrees of P (x) and Q(x). If the degree of P (x) is LESS than Q(x), we
have a proper fraction: move on to step 2. Else

(a) If the degree of P (x) is greater than the degree of Q(x), then a preliminary step
must be carried out: use long polynomial division to divide Q(x) into P (x). We
then obtain

P (x)

Q(x)
= S(x) +

R(x)

Q(x)

S(x) is the quotient and R(x) is the remainder. Move to step 2.

2. Factor as much as possible. Any polynomial can be factored as a product of linear factors
in the form (ax+ b) and an irreducible factor (ax2 + bx+ c).

(a) By inspection: a root may stand out.
(b) Trivial roots: −2,−1, 0, 1, 2.
(c) Regular factoring techniques.
(d) Long division by suspected factors if the degree is greater than 2.

3. Sub-cases. Express the proper function as the sum of partial fractions. Then, you need
to determine which case we are in.

(a) Case 1) Q(x) is the factor of distinct, linear factors. Then, by the partial fractions
theorem, there exists k constants A1, A2, ..., Ak such that

R(x)

Q(x)
=

A1

a1x+ b1
+ · · ·+ Ak

akx+ bk

Using partial fractions decomposition, find the constants.
(b) Case 2) if Q(x) is a factor of k linear factors with repetition. By the partial fractions

theorem, there exists constants such that

R(x)

Q(x)
=

A

a1x+ b1
+

A2

(a1x+ b1)2
+ · · ·+ An

(a1x+ b1)n

Basically, every degree of n gets expressed if the linear factor is ever repeated.
(c) Case 3) Q(x) a distinct irreducible quadratic factor. We know this happens if the

following holds:
ax2 + bx+ c, where ∆ = b2 − 4ac < 0

By the partial fraction theorem, for irreducible quadratic terms, the following addi-
tional term will emerge:

R(x)

Q(x)
= · · ·+ Ax+B

ax2 + bx+ c
+ · · ·

In this case, the following integration formula might be useful when trying to inte-
grate an irreducible quadratic function:∫

1

x2 + a2
dx =

1√
a

arctan
x√
a

+ C (23)

(d) Case 4) if Q(x) contains irreducible quadratic factors, at least one of which is
repeated. Then, we are in a case analogous to that of case 2. By the partial fractions
theorem, there exists constants such that:

R(x)

Q(x)
= · · ·+ A1x+B1

Ax2 + bx+ c
+

A2x+B2

(Ax+ bx+ c)2
+ · · ·+ Anx+Bn

(ax+ bx+ c)n
+ · · ·
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4. Integrate. Most common integration/algebra methods that appear:
(a) Complete the square
(b) U-substitution
(c) Using the integral of arctan.
(d) Using the integral of x−1.

Remark 7.1. If we have the following integral∫
x

(1 + x2)m
dx

Then, the following holds ∀m:

1. If m = 1, then ∫
x

(1 + x2)m
dx =

1

2
ln(1 + x2) (24)

2. If m > 1, then ∫
x

(1 + x2)m
dx =

1

2m−1 ×
1

(x2 + 1)m−1
(25)

7.5 Integration techniques

Memorize all the integrals in the chart.

1. Simplify the integrand, if possible.
(a) algebraically
(b) trig identities

2. Look for an obvious substitution
3. Classify the integrand according to its form.

Table 1: Recognizing Integration Patters

Technique Hint

Trigonometric integrals If f(x) is a product of powers of sin(x) and cos(x)

or tan(x) and sec(x), then we use the substitutions
recommended from that section.

Rational functions if f is a rational function, then we use partial fractions.
Integration by parts if f(x) is the product of a power of x or a polynomial

and a transcendental function (ex - trig, exponential, or log)
, then use integration by parts

Radicals certain forms of radial hint to certain subs√
±x2 ± a2 ⇒ inverse trig sub.

n
√
ax+ b use the rationalizing substitution u = n

√
ax+ b

4. Try again: there are really only two main integration methods: substitution and parts,
so if it does not work the first time, then
(a) Try substitution again
(b) Integral by parts can sometimes work with single functions (like, integrating arctan).
(c) Manipulate the integral again: rationalizing using the denominator and using trig

identities.
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7.6 Improper Integrals

Definition 7.1. Improper integral an improper integral is one where either the interval is
infinite or if there exists an infinite discontinuity contained within the limits of integration.

7.6.1 Type I: infinite Integrals

Motivation: want to extend the concept of the definite integral to the case where the interval
is infinite.

Definition 7.2. There are three cases of type I improper integrals

1. If
∫ t

a
f(x)dx is finite for every number f ≥ a, then we define the following integral:∫ +∞

a

f(x)dx = lim
x→+∞

∫ t

a

f(x)dx (26)

2. If
∫ b

t
f(x)dx exists, then for every number t ≤ b, then we define the following integral:∫ b

−∞
f(x)dx = lim

t→−∞

∫ b

t

f(x)dx (27)

For points 1) and 2), the following definitions apply:

(a) Convergent → if the limit exists as a finite number, then we say that the infinite
integral converges.

(b) Divergent → if the corresponding limits do not exist as finite numbers.

3. If both
∫ t

a
f(x)dx and

∫ b

t
f(x)dx are convergent, then we can define the following:∫ +∞

−∞
f(x)dx =

∫ a

−∞
f(x)dx+

∫ +∞

a

f(x)dx (28)

where any a ∈ R can be used.

Remark 7.2. Why is 1
x2 convergent but 1

x
is divergent? This is because the former is suf-

ficiently decreasing, consequently producing a finite area; the other is not, consequently
producing an infinite area. In fact, this is a rule:∫ +∞

1

1

xp
dx is

{
convergent if p > 1

divergent if p ≤ 1
(29)

Remark 7.3. For case 3, a nice place to split an integral up is usually at 0 because it makes
evaluating things easier.

7.6.2 Discontinuous Function

Motivation: you need to first check an integral for continuity; if there is a discontinuity, then
you need to split the integral at the discontinuity.

Definition 7.3. 1. If f is a continuous function on [a, b[ and discontinuous at x = b, then
we obtain: ∫ b

a

f(x)dx = lim
t→b−

∫ t

a

f(x)dx (30)
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2. If f is continuous on ]a, b], and discontinuous at x = a, then:∫ b

c

f(x)dx = lim
t→a+

∫ b

t

f(x)dx (31)

(basically the same idea as point 1). The same sub-cases from the type I improper integral:

(a) Convergent if the corresponding limits exist as finite numbers.
(b) Divergent if the corresponding limits do not exist as finite numbers.

3. If f has a discontinuity at c, c ∈ (a, b), and both
∫ c

a
f(x)dx and

∫ b

c
f(x)dx are convergent,

then: ∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx (32)

8 Further Applications of Integration

8.1 Arc Length

Motivation: integrals can also be used to compute the length ` under the curve C. Main idea:

Definition 8.1. The arc length of the curve can be approximated, if we are given a function
of x, with the following equation:

L =

∫ b

a

√
1 + [f ′(x)]2dx (33)

Definition 8.2. The idea to obtain the length of the curve defined in terms of y is identical:

L

∫ d

c

√
1 + [g′(y)]2dy (34)

Definition 8.3. The arc length function is given by the following equation:

S(x) =

∫ x

0

√
1 + f ′(t)2dt (35)

It measures the arc length obtained so far: the length of the curve y = f(x) from a particular
starting point P (a, f(a)) to a point on the curve Q(x, f(x)).
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8.2 Areas of Surface of Revolution

Motivation: to define this, you need a curve to rotate around an axis. We use the ideas from
chapter 6 and section 8.1 to determine this.

Definition 8.4. A surface of revolution is formed when a curve is rotated around an axis.
Such a surface is called the lateral boundary of the volume.

Definition 8.5. If we assume that f is positive and has a continuous derivative. Then, we
define the surface of the area obtained by rotating the curve y = f(x) from a to b about the
x-axis as such:

S =

∫ b

a

2πf(x)
√

1 + [f ′(x)]2dx (36)

where
√

1 + [f ′(x)]2 corresponds to the height. Note that we are approximating the original
curve following the same idea/method used to obtain the arc length.

Remark 8.1. If x = g(y) is rotated about the y-axis, then we obtain...

S =

∫ d

c

2πy
√

1 + [f ′(y)]2dy (37)

11 Infinite Sequences and Series

11.1 Sequences

A sequence is a list of numbers written in a definite order. It can be pictured by plotting its
elements on the number line. Note that we denote the sequence {a1, a2, ...} as {an} or {an}∞n=1.

• It’s a function whose domain is the set of all positive integers.
• It’s graph contains isolated points.

Definition 11.1. A limit of a sequence, L, is defined as

lim
n→∞

an = L or an → L as n→∞ (38)

The idea is that we can make an as close to L as we’d like by taking n, the index, to be
sufficiently large.

• We say that a series is convergent if the limit of an exists as a finite number.
• We say that a series is divergent if the limit does not exist as a finite number.
• Remark: the only difference between the limit of a sequence and the limit of a function

is that as n tends to infinity, n is required to be an integer. A consequence of this:

Theorem 5. If limx→+∞ an = L and if f(n) = an, then

lim
n→∞

an = L

This implies that we can use limit laws on sequences.

Properties of sequences: if an and bn are convergent series, then we obtain the following
rules:

1. limn→+∞(an ± bn) = limn→∞(an)± limn→∞(bn)
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2. limn→∞(anbn) = (limn→∞ an)(limn→∞ bn)

3. limn→∞
an
bn

= limn→∞ an
limn→∞ bn

4. Very useful: limn→∞((an)p) = (limn→∞ an)p; this property basically tells you do what
you want.

Squeeze Theorem: another important theorem. If an ≤ bn ≤ cn for some n ≥ n0, and

lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L

Remark 11.1. If |an| → 0 as n→∞, then an → 0.

Definition 11.2. We say that a sequence is increasing if an < an+1∀n ≥ 1. We say that a
function is decreasing if the reverse equality holds. A function that is EITHER decreasing or
increasing is monotonic. You prove this in two ways:

• Induction (prove for a base case – the lower limit of the interval), then prove that P (n)→
P (n+ 1).

• First derivative test.

Definition 11.3. We say that a sequence is bounded above if there is a number N such that
an ≤ N, ∀n ≥ 1.

We say that a sequence is bounded below if there exists a number m such that an > m∀n ≥ 1.
A function that is bounded BOTH above and below is called bounded.

Remark 11.2. Not all bounded sequences are convergent, and not all convergent sequences
are bounded.

Theorem 6. (Monotonic Sequence Theorem) Every bounded and monotonic sequence is
convergent.

11.2 Series

A series is the sum of all terms in a sequence. It is denoted by
∞∑
n=1

an

• We can study the behaviour of a series with partial sums by taking the limit as the
partial sums tend to an.

• The partial sum is denoted as sn.

Definition 11.4. Given a series
∑∞

n=1 an, let sn denote the nth partial sum

sn =
∞∑
i=1

If the sequence is convergent and if limn→∞ sn = s exists as a finite number, then the SERIES∑
an is called convergent, and we can write:

∞∑
n=1

an = s

Else, if the sequence is divergent, then its corresponding series is also called divergent.
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Some important series to know:

• Telescopic series: these ones, we need to use partial fraction decomposition (sometimes)
to break the summand up. We can obtain the sum of the series by cancelling out the
correct terms.

• The harmonic series, given by
∞∑
n=1

1

n

is divergent.
• The geometric series is a series of the form

a+ ar + ar2 + ar3 + ...+ arn−1 =
∞∑
n=1

arn−1, a 6= 0

In other words, it is a series where each term is obtained from the preceding term by
multiplying it by a common ratio r.

– It converges iff |r| < 1. The sum of the sequence is given by:
∞∑
i=1

arn−1 =
a

1− r
(39)

Theorem 7. If the series
∑∞

n=1 an is convergent, then as an → 0 as n→ +∞.

Remark 11.3. The converse is COMPLETELY FALSE; if the limit of an tends to 0, we cannot
say anything (ex - harmonic series).

• If the limit of an does not exist, or exists but does not equal zero, then we can conclude
that the series is divergent.

• This is the test for divergence, and should be the first tool employed to test if a series
cv or dv.

• If two series, given by an and bn are convergent, then so are scalar multiples, its sum,
and its difference. ALL COMPONENTS MUST BE CONVERGENT FOR THIS TO
APPLY.

Remark 11.4. A finite number of terms does not impact the convergence or divergence of a
series; in fact, it only depends on the behaviour of an as n tends to infinity. This is important.

11.3 Integral Tests and Estimates of Sums

Motivation: the aim is to develop tests to enable us to determine if a series is convergent or
divergent without explicitly finding the sum, because it is generally difficult to find the sum of
a series.

Definition 11.5. The integral test: suppose that f is continuous, positive, and decreas-
ing on the interval [1,∞] and let an = f(n). Then, the series is convergent iff its corresponding
improper integral is convergent.

This proves a very important lemma (“if you do not know this, then you have no chance on the
final, so learn it.”)

Lemma 8. The p-series test defines convergence/divergence as such:
∞∑
n=1

1

np

{
convergent if p > 1

divergent if p ≤ 1
(40)
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11.3.1 Estimating the Sum of a Series

Motivation: suppose that we are able to show that a series
∑
an is convergent. We now want

to find an approximation to the sum S of the series. The remainder is the error made when
sn, the first n terms of the series, is used as an approximation to the total sum.

• The remainder is given by

Rn = s− sn = an+1 + an+2 + .... (41)

• The error when estimating using the integral test is given by:∫ ∞
n+1

f(x)dx ≤ Rn ≤
∫ ∞
n

f(x)dx (42)

11.4 Comparison Test

Idea: compare a given series with a series that we already know is convergent or divergent.

Definition 11.6. Comparison test: suppose that
∑
an and

∑
bn are series with POSITIVE

terms. Then,

1. If
∑
bn is convergent and an ≤ bn ∀n near infinity, then

∑
an is also convergent.

2. If
∑
bn is divergent and an ≥ bn ∀n near infinity, then

∑
an is also divergent.

• In using the comparison tests, we must have a known series to work with. Generally, we
have two series for this: the geometric series and p-series. A question like this will be on
the final.

Definition 11.7. The limiting comparison test allows us to compare series without having
one that is bigger or smaller than the other. Requires terms to be positive. If

lim
n→∞

an
bn

= c

where c is a finite and positive constant (NOT 0 or positive infinity), then there are two possi-
bilities: (1) both cv, (2) both dv.

We can basically conclude that the series have the same behaviour as n tends to infinity.
Generally take bn to be the main terms of both the denominator and numerator.

11.5 Alternating Series

Motivation: the convergence tests that we have looked at so far only apply to series with
positive terms; in this type of series and the text, we will learn to deal with series whose terms
are not necessarily positive.

Definition 11.8. An alternating series is a series whose terms alternate between positive
and negative. They are in the form of:

an = (−1)nbn or an = (−1)n+1bn

Where bn is the positive sequence – that is, the absolute value of an. It can also be present in
trigonometric functions...

cos(nπ)

n
≡ sin

(
π

2
+ nπ

)
≡ (−1)n
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The test for this series is as follows:
If the alternating series satisfies the following general rules, then the series is convergent. If the
rules are not satisfied, then we cannot say anything and need to find another test.

1. bn+1 ≤ bn∀n

2. limn→+∞ bn → 0

11.6 Absolute Convergence, Root, and Ratio Tests

11.6.1 Absolute convergence

Motivation: given any series
∑
an, we can consider the corresponding series

∞∑
n=1

|an| = |a1|+ |a2|+ ....

whose terms are the absolute value of the terms of the original sequence.

Definition 11.9. A series is called absolutely convergent if the series of the absolute values
is convergent.

• A series is called conditionally convergent if it is convergent, but not absolutely con-
vergent. (An example of this is the alternating harmonic series).

• If a series is absolutely convergent, then it is convergent.
• This is a good way to study the series with non-positive general terms.
• Useful thing to remember:

|cos(n)| ≤ 1

11.6.2 The Ratio Test

This test is useful in determining whether a given series is absolutely convergent. This is good
to use when factorials occur. Three cases.

1. If
lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1

Then, the series is absolutely convergent and therefore convergent.

2. If
lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1 orL =∞

then, the series is divergent.

3. “The worst one”: DO NOT DRAW ANY CONCLUSIONS FROM THIS CASE, BE-
CAUSE YOU CANNOT:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L = 1

then, the ratio test is completely inconclusive and you need to find another test.
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11.6.3 Root test

This test is good to use when we have powers of n.

1. If
lim
n→∞

(|an|)1/n = L < 1

then the series is absolutely convergent.

2. If
lim
n→∞

(|an|)1/n = L > 1 or L =∞

then, the series is absolutely divergent.

3. The worst one again: if
lim
n→∞

(|an|)1/n = L = 1

then the test is completely inconclusive

11.7 Strategy for Testing Series

Classify according to its form

• If we are asked to compute the sum, then we know that the series must be one that
can be studied using telescopic series, integral test, or geometric series.

• The limiting comparison test is similar in form to the p-series.
• Always use the test for divergence at the beginning.
• P-series type series will be rendered inconclusive by the root and ratio tests.
• Use the integral test when the summand is easy to integrate and the three conditions

are met.

The final...

• 3 h long. 11-12-2017. 14h00.
• 18-long answers similar to the mid-term. Half will be series, half will be integrals.

Page 19


	Things we should've remembered from Calculus I....
	Integrals
	Areas and Distances
	The Definite Integral
	Fundamental Theorem of Calculus
	Indefinite Integrals and the Net Change Theorem
	Substitution Rule
	Symmetry


	Applications of Integration
	Area Between Curves
	Volumes
	Washer Method

	Volumes by Cylindrical Shells
	Average Value of a Function

	Techniques of Integration
	Integration by Parts
	Trigonometric Integrals
	Trigonometric Substitution
	Integration of Rational Functions by Partial Fractions
	Integration techniques
	Improper Integrals
	Type I: infinite Integrals
	Discontinuous Function


	Further Applications of Integration
	Arc Length
	Areas of Surface of Revolution

	Infinite Sequences and Series 
	Sequences
	Series
	Integral Tests and Estimates of Sums
	Estimating the Sum of a Series

	Comparison Test
	Alternating Series
	Absolute Convergence, Root, and Ratio Tests
	Absolute convergence
	The Ratio Test
	Root test

	Strategy for Testing Series


