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1 Introduction

What is this class about?

1. Review of linear algebra, but with full proofs.
2. More abstract. We will move from Rn to abstract vector spaces.
3. Many objects in maths behave similarly in the sense that they are actually instances of the same

phenomenon. So, we want to generalise in order to...

a) Be more efficient.
b) Clarifies the essence of what’s behind the object
c) Groups, rings, fields, and vector spaces are all such objects.

Definition 1 (Group). Let G be a set with a binary operation. A binary operation means that you
can take two objects in the set, “add” them, and return another object in the set. A binary operation
G×G→ G is a binary operation if it satisfies the following rules:

1. Law of Associativity: ∀a, b, c ∈ G:

a+ (b+ c) = (a+ b) + c

∀a, b, c ∈ G.
2. Existence of an additive neutral element: ∃ 0 ∈ G such that:

0 + a = a+ 0 = a

∀a ∈ G.
3. Existence of an additive inverse: ∀a ∈ G, there exists an element −a ∈ G such that:

a+ (−a) = (−a) + a = 0 (1)

Any structure with a binary operation satisfying the above rules is called a group. A group always
consists of two parts: a set and the operation. For example, a group equipped with addition is denoted
(G,+).

Sometimes, we would like to have a group whose binary operation is commutative. Not all groups
are commutative!

Definition 2 (Abelian Group). A group (G,+) is called abelian if ∀a, b ∈ G, we have the law of
commutativity:

a+ b = b+ a

Example 1 (Examples of abelian groups). R with standard addition, Z with standard addition, Q
with standard addition, C with standard addition. If we take n copies of R and C, denoted Rn and
Cn, equipped with component-wise addition, then we also get groups.

However, N with standard addition is not a group simply because there is no element with an
additive inverse in N for any value.

Example 2 (More examples of groups). 1. Matrix groups equipped with matrix addition. The
sets of all m× n matrices with coefficients in R and C, respectively, are denoted as:

MAT(m× n,R)

MAT(m× n,C)

when equipped with component-wise addition they form a group.
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2. Let’s look as functions. The set F (R) of all real-valued with domain R, equipped with addition
defined as:

(f + g)(x) := f(x) + g(x)

form a group. These have uncountably many components. The neutral element is the zero
function:

0(x) := 0

and the additive inverse is:

(−f)(x) := −f(x) ∀x ∈ R

Example 3 (Non Abelian Group: General Linear). GL(n,R) is called the general linear group. It
is the set of all n × n invertible matrices with real coefficients together with the operation of matrix
multiplication. The neutral element is the n× n identity matrix, denoted by In:

InA = AIn = A ∀A ∈ GL(n,R)

Since these matrices, the multiplicative inverse is A−1, since AA−1 = In, which is the neutral element.
Since associativity is clear, we have that GL(n,R) forms a group.

Theorem 1 (Cancellation Law). Let (G,+) be a group, and let a, b, c ∈ G be elements such that:

1. a+ b = a+ c⇒ b = c and
2. b+ a = c+ a⇒ b = c

Proof. We need to use the properties of a group as discussed. We will first prove (a). To that end,
let’s first use the existence of an additive inverse:

− a+ (a+ b) = −a+ (a+ c)

⇒(−a+ a) + b = (−a+ a) + c (Law of Associativity)

⇒0 + b = 0 + c (By definition of neutral element)

⇒b = c (By neutral element law)

The proof for (b) is an exercise.

2 Abstract Vector Spaces

Motivation: generalise Rn.

Definition 3 (Vector Space over a field). Let V be a set, and let K be an arbitrary field (in this class
we will assume that K is either R or C) together with two operations:

+ : V × V → V (“Addition”)

· : K × V → V (“Scalar multiplication”)

and assume that (V,+) is an abelian group and that the · operation obeys the following rules:

1. “Associativity”:

(k`)v = k(`v) ∀k, ` ∈ K, v ∈ V

2. “Distributivity of scalars over vectors”:

(k + `)v = kv + lv ∀k, ` ∈ K, v ∈ V
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3. “Distributivity of vectors over scalars”:

k(u+ v) = ku+ kv ∀k ∈ K,u, v ∈ V

4. “The existence of the neutral element of scalar multiplication”

1 · v = v ∀v ∈ V

Then, the tuple (V,+, ·) is called a vector space over K.

Remark: the final axiom is not self-evident. In fact, it is not provable from other axioms. For
more details see Assignment 1.

2.1 Many Examples of Vector Spaces

Example 4 (Examples of vector spaces). Rn endowed with standard vector addition and scalar
multiplication, denoted (Rn,+, ·) forms a vector space. Additionally, the set of all n × m matrices
with component-wise addition and standard scalar multiplication, denoted by (MAT(m× n,K),+, ·)
also forms a vector space over K.

Example 5 (Sequence Vector Spaces). Let S be the set of all real-valued sequences, i.e.:

{(a1, a2, a3, ...) | ai ∈ R}

This can be considered a vector space. Addition is component-wise and multiplication is also component-
wise. It is similar to Rn, except for Rn we stop at some finite number n. Thus, this space of sequences
is infinite-dimensional. It is trivially a vector space over R, since checking the axioms amounts to
passing them down to the component-level, since all operations are component-wise, and those will
trivially follow from the fact that the components are elements of the vector space (R,+, ·).

The following examples provide interesting vector spaces for the field of mathematics real analysis:

Example 6 (Spaces of convergent real-valued sequences). Let c be the set of all convergent real
sequences together with component-wise addition and scalar multiplication. We need to be careful,
since something can go wrong. In particular, the + operation needs to be a binary operation, meaning
that when you add two members of the set you obtain another member in the set. We will use and
not prove the following result from real analysis: the sum of two convergent sequences converge and
they converge to the limits of the individual sequences that we add. Thus, the only thing we need to
check is that c is closed under · and +. However, both of these results are proven in analysis.

Example 7 (The space of all real-valued sequences that converge to zero c0). This space is denoted
by c0 and is clearly closed under + and ·. This forms a subspace of c and is also infinite-dimensional
but it is not countable.

Example 8 (The space c00, the space of all real sequences that are eventually zero). . This space
contains sequences where all but finitely many terms are different from zero. This is clearly closed
under addition and multiplication, and it is a subspace of c0. While this vector space is still infinite
dimensional, it is countable.

Example 9. Let I ⊆ R be an interval. Consider F (I). This is the set of all real-valued functions on
I with + and · defined by:

(f + g)(x) = f(x) + g(x)

(kf)(x) = kf(x)

This example will be investigated in Assignment 1. It is a vector space.

There are a lot of functions that mathematicians care about: differentiable functions, continuous
functions, those that have Taylor expansions on I, etc. These are all vector spaces.
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Example 10. (a) Let F c(I) be the set of all continuous functions on I. (b) Let C0(I) be the set
of all continuously differentiable functions on I. (c) Let Cn(I) be the set of all functions on I with
continuous derivatives up to order n. (d) Let C∞(I) be all functions on I with derivatives of all order.
Define operations on (a) - (d) as was defined in the previous example. These are all vector spaces over
R.

Linear algebra is also useful for solving differential equations. For example, consider the set of all
solutions of y′′ + y = 0, or more generally, the set of all solution to any linear differential equation:

any
(n) + a(n−1)y

(n−1) + ...+ any
′ + a0y = 0

where a0, ..., an ∈ R. This is an important set of functions. We really care about the closedness of the
so-called solution space. So, we need to verify that solutions are closed under + and ·. To that end,
let y1, y2 be solutions of y′′ + y = 0. Then we have:

y′′1 + y1 = 0 and y′′2 + y′2 = 0

Now let’s study (y1 + y2)
′′ + (y1 + y2). By the linearity of differentiation:

y′′1 + y′′2 + y1 + y2 = (y′′1 + y1) + (y′′2 + y2) = 0 + 0 = 0

Hence, we have closure under addition. For scalars:

(ky1)
′′ + ky1 = ky′′1 + ky1 + k(y′′1 + y1) = 0

which implies that ky1 is also a solution, and we therefore have closure under scalar multiplication.
Once we determine that the solutions are a vector space, then all we need to do is obtain a basis

and take all linear combinations to obtain more solutions of DEs.

2.2 Consequences of the Axioms

This section has some immediate consequences from the axioms of a vector space.

Theorem 2. Let (V,+, ·) be a vector space over K. Then:

1. k · 0 = 0 ∀ k ∈ K.
2. 0 · v = 0 ∀ v ∈ V .
3. k · v = 0 ⇐⇒ k = 0 or v = 0.

Proof. 1. We need to show that k · 0 = 0. This is a “fun trick proof.”

k · 0 = k · (0 + 0) (0 is the neutral element of + )

k · 0 = k · 0 + k · 0 (distributivity of scalars over vectors)

0 + k · 0 = k · 0 + k · 0 (by the neutral element law)

0 = k · 0 (by the cancellation law)

2.

0 · v = (0 + 0)v (0 is neutral element of addition in K)

0 · v = 0v + 0v (distributivity of scalars over vectors)

0 + 0 · v = 0 · v + 0 · v (neutral element law)

0 = 0 · v (cancellation law)

3. There are two directions to show here.
“⇐”: if k = 0 or v = 0, then it follows from (a) + (b), respectively, that kv = 0.
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“⇒”: there are two cases to consider. If k = 0, then we are done. If k 6= 0, then we need to
prove that v = 0. Take kv = 0. It has a multiplicative inverse:

kv = 0 ⇒
(

1

k

)
(kv) =

1

k
0 = 0

Apply associativity to the
(
1
k

)
(kv) term:(

1

k
k

)
v =︸︷︷︸
axiom

1v = v

This implies that v = 0, and so we are done.

Theorem 3. Let (V,+, ·) be a vector space over K. Then:

1. n · v = v + ...+ v︸ ︷︷ ︸
n times

for all n ∈ N.

2. 0 · v = 0.
3. (−1)v = −v (the additive inverse) for all v ∈ V .

Proof. 1. We will prove this one by induction. The base case is obvious since it is an axiom of a
vector space (1v = v). Now for the inductive step assume that

nv = v + ...+ v︸ ︷︷ ︸
n times

for some n in N. Applying distributivity:

(n+ 1)v = nv + 1v = v + ...+ v︸ ︷︷ ︸
n times, by IH

+ v︸︷︷︸
by axiom

= v + ...+ v︸ ︷︷ ︸
n+1 times

where the final equality follows from the fact that we are in an abelian group.
2. We get this from (1); we have v, zero times.
3. We want to prove that (−1)v is the additive inverse. We can simply add this candidate and

prove that the sum is zero:

v + (−1)v (use the axiom)

(1)v + (−1)v (use the other axiom)

(1 + (−1))v (distributivity)

0v

and we know that 0v = 0 by (2). We thus have that (−1)v is the additive inverse of v, which is
what we wanted to show.

Exercise: prove that (−n)v = (−v) + ...+ (−v)︸ ︷︷ ︸
n times

.

2.3 Subspaces

Definition 4 (Subspaces). Let (V,+, ·) be a vector space over K. Let W ⊆ V . Then, we say that W
is a subspace of V , in symbols W ≤ V , if (W,+, ·) is a vector space over K in its own right.

Q: How can we determine if something is a subspace? This question motivates the next theorem.

Theorem 4. Let (V,+, ·) be a vector space over K, W ⊆ V . Then, W ≤ V if and only if:

1. W is closed under addition and multiplication.
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2. 0 ∈W .

Note that the final requirement in the theorem is actually a proxy for requiring that W is not the
empty set.

Proof. “⇒”: Since W is a vector space over K, W is closed under + and ·. Furthermore, 0 ∈W since
(W,+) is an abelian group and thus contains the neutral element.

“⇐”: This is a straightforward verification of the axioms of a vector space. Most of the axioms
will simply follow, since as a subset of V W will inherit a lot of rules.

• W will inherit associativity from V .
• W will inherit commutativity from V .
• W contains the neutral element by condition.
• Let u be an arbitrary vector. Since U is closed under scalar multiplication, we have that (−1)u =
−u ∈ U . This proves the existence of an additive inverse.
• All of the scalar multiplication axioms will hold since they hold ∀ v ∈ V .

This implies that W is a vector space with respect to + and ·, which gives us that W ≤ V , which is
what we wanted to show.

Here are some examples of subspaces of vector spaces.

Example 11. The following are the only subspaces of R2:

1. {0}
2. All lines through the origin.
3. The whole of R2.

Example 12. Let V := MAT(m× n,K). Let U := the set of all upper triangular matrices i.e.:

U := { A = (aij) ∈ MAT(m× n,K) | aij = 0 ∀i > k, 1 ≤ i, j ≤ n}

This is a subspace.

Example 13. Recall sequence spaces. We have the following chain of subspaces: C00 ≤ C0 ≤ C ≤ S,
where S denotes a sequence space.

Example 14. Let Pn(K) be the set of polynomials of degree at most n. Let P (K) be the set of all
polynomials, and equip it with standard addition of polynomials. Then:

P0(K) ≤ P1(K) ≤ P2(K) ≤ · · · ≤ Pn(K) ≤ · · · ≤ P

The dimension of each Pn is n+ 1.

Theorem 5. Let (V,+, ·) be a vector space over K.

1. Let U be a subspace of V and let W be a vector space. Then: U ∩W ≤ V .

2. Let U1, ..., Un ≤ V . Then: U1 ∩ · · · ∩ Un =
⋂n
i=1 Ui ≤ V .

3. Let I be an arbitrary index set, and let Ui ≤ V ∀i ∈ I. Then:
⋂
i∈I VI ≤ V .

Proof. 1. Another straightforward verification of the axioms.

a) 0 ∈ U , and 0 ∈W since W is a vector space. Thus 0 ∈W ∩ U .
b) Now we check closure under addition and scalar multiplication.

i. Let v1, v2 ∈ U∩W . We thus especially have that v1 ∈ U and v2 ∈ U , and so v1+v2 ∈ U
since U is closed under addition. Similarly, v1 + v2 ∈W . Since the sum is in both sets,
it is in the intersection of the sets. Hence, it is closed under addition.
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ii. Since u1 ∈ U , Ku1 ∈ V for all k ∈ K, since U is a vector space. Similarly, if u2 ∈ W ,
then ku2 ∈W for all k ∈ K. Thus, the product is in the intersection.

So, by the subspace criteria, U ∩W ≤ V .
2. Exercise.
3. Exercise.

So, intersections are generally not a problem. However, unions are a more difficult case. For example
let V = R2, and define U to be the x-axis and W to be the y-axis. Consider U ∪W . It is not a line
or plane, so it is not a subspace. While this union of subspaces will always contain zero and while it
will always be closed under scalar multiplications, it is not closed under addition. Unions in general
are not subspaces, which motivates the following theorem. The proof is in assignment two.

Theorem 6. Let (V,+, ·) be a vector space over K. Then, U ∪V ≤ V if and only if U ⊆W or W ⊆ U
(i.e., the trivial cases).

Proof. Homework.

Definition 5 (Sum of Vector Spaces). Let (V,+, ·) be a vector space over K. Let U,W ≤ V . Then:

U +W := {w + w | u ∈ U, w ∈W}

which is called the sum of U and W , is defined as follows: all the possible sums with one vector from
U and one vector from W .

Q: Why do we bother defining the sum?

1. It is a subspace of V .
2. It is the smallest subspace of V that contains the union of U and W (“generator”).

Theorem 7. Let (V,+, ·) be a vector space over K. Let U,W ≤ V . Then:

1. U +W ≤ V .
2. U + W is the smallest subspace of V that contains both U and V and thus their union. This

means that if Ṽ is any subspace of V with U ∪W ⊆ Ṽ , then the sum U +W ⊆ Ṽ .

Proof. 1. Another straightforward verification of the axioms.

a) We have that 0 ∈W and 0 ∈W , and so 0 = 0 + 0 ∈ U +W .
b) Let v1, v2 ∈ U +W . Then, ∃ u1, u2 ∈ U , w1, w2 ∈W , such that:

v1 = u1 + w1

v2 = u2 + w2

Adding these together we obtain:

v1 + v2 = (u1 + u2)︸ ︷︷ ︸
∈U

+ (w1 + w2)︸ ︷︷ ︸
∈W

∈ U +W

c) Now for scalar multiplication. Write

kv1 = k(u1 + w1)

= ku1 + kw1 (distributivity)

ku1 ∈ U and kw1 ∈W , which means that kv1 ∈ U +W , which is what we wanted to show.
Therefore, U +W ≤ V .

2. Let Ṽ be any subspace of V that contains both U and W . Let u ∈ U and w ∈ W be arbitrary.
THen, by definition, u+w ∈ U+W . Every element bust thus be in Ṽ , which implies that U+W
must be contained in Ṽ , which proves that U+W is the smallest subspace of V containing U∪W .

In a similar fashion we can define U1 + ...+ Un, where U1, ..., Un are all subspaces of V as:

{u1 + ...+ un | uk ∈ Uk ∀ 1 ≤ k ≤ n}

Then it’s easy to verify that U1 + ...+ Un ≤ V .
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2.4 Linear Combination and Span

Definition 6 (Linear Combination). Let (V,+, ·) be a vector space over K. Let v1, ..., vn ∈ V and let
k1, ..., kn ∈ K. Then, an expression of the form

k1v1 + ...+ knvn (2)

is called a linear combination of v1, ..., vn.

Note that it is possible to extend this to infinitely many vectors:

k1v1 + k2v2 + ...

but this is completely meaningless. This is a bad thing since we do not know what it means to add
infinitely many vectors. We have not developed a notion of convergence or distance on a vector space
in this class, so we will not discuss this. What we an do is write k1v1 + k2v2 + ... where all but finitely
many of the ki = 0, but this can be viewed as an abuse of notation, since the sum is actually finite.

Definition 7 (Span). Let (V,+, ·) be a vector space over K. Let v1, ..., vn ∈ V . Then:

span{v1, ...vn} := {k1v1 + ...+ knvn | 1 ≤ i ≤ n ki ∈ K} (3)

is called the span of v1, ..., vn. It is the set of all possible linear combinations. We can extend this to
infinitely many vectors v1, v2, ... ∈ V as:

span{v1, ..., vn} := {k1v1 + k2v2 + ... | ki ∈ K, all but finitely many ki are zero }

Note that

span{v1, ..., vn} ={v1}+ ...+{vn}

Which means that the span of v1, ..., vn can be written as:

span{v1, ..., vn} = {k1v1 + ...+ knvn | ki ∈ K}

From this, we also obtain that the span of the vectors v1, ..., vn is the smallest subspace of V containing
the vectors v1, ..., vn.

Example 15. Let V = Rn. Then, the standard basis vectors: e1 = (1, 0, 0, ...), e2 = (0, 1, 0, ...), ..., en =
(0, 0, ..., 1) spans Rn.

Example 16. Consider the vector space Pn(K). The building blocks of this vector space are:

Pn(K) = {1, x, x2, x3, ..., xn}

We thus have:

span{1, x, x2, ..., xn} = {k01 + k1x+ ...+ knx
n | ki ∈ K, 0 ≤ i ≤ n}

= Pn(K)

Example 17. Consider the vector space S of all sequences with coefficients in R. Define:

s1 = (1, 0, 0, ....)

s2 = (0, 1, 0, ....)

s3 = (0, 0, 1, 0, ...)

...

This is similar to the previous example where we had the standard basis of Rn. However, {s1, s2, ...}
does NOT span s since liner combinations only involve finitely many terms. Every linear combination
of s results in a sequence that is eventually constantly equal to zero, i.e, the subspace c00.
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2.5 Linear Independence and Dependence

Definition 8 (Linear Independence and Dependence). Let (V,+, ·) be a vector space overK, v1, ..., vn ∈
V . We say that v1, ..., vn are linearly independent if

k1v1 + ...+ knvn = 0

implies that k1 = k2 = ... = kn = 0. v1, ..., vn are called linearly dependent if they’re not linearly
independent.

Theorem 8. Let (V,+, ·) be a vector space over K. Then:

1. Any (finite) subset of V that contains the zero vector is linearly dependent.
2. If v1, ..., vn are linearly dependent, then at least one of them, say vj , can be written as a linear

combination of the remaining vectors. In that case, consider span{v1, ..., vn}. Then we can kick
vj out and still have the same span:

span{v1, ..., vn} = span{v1, ...v̂j , ..., vn}

Proof. 1. Consider 0, v1, ..., vn. This is a linearly dependent set and we can prove it by providing a
non-trivial combination that produces zero:

1 · 0 + 0v1 + ...+ 0vn = 0

since the coefficient of the zero vector is non-zero. Remark: even just the set with the zero
vector, {0}, is linearly dependent. This is because 1 · 0 = 0, which is a non-trivial combination
of one vector resulting in the zero vector.

2. Let v1, ..., vn be linearly dependent. By definition, there exists scalars k1, ..., kn ∈ K, not all of
them zero, such that:

k1v1 + ...+ kjvj + ....+ knvn = 0

Assume that ki 6= 0. Then, we can solve the equation:

kjvj = −k1v1 − ...− kj−1vj−1 − ...− kj+1vj+1 − ...knvn

Since kj 6= 0, we can divide by kj :

vj =
−k1
kj

v1 − ...−
−kn
kj

vn

Which is a linear combination of the remaining vectors that results in vj . We now want to show
that the spans with and without vj are the same. Obviously, span{v1, ..., vj−1, vj+1, ..., vn} is a
subset of span{v1, ..., vn}. We need to prove the opposite inclusion:

span{v1, ..., vn} ⊆ span{v1, ..., v̂j , ..., vn}

To that end, take an arbitrary element of the space of v1, ..., vn:

v = a1v1 + ...+ ajvj + ...+ anvn ∈ span{v1, ..., vn}

Then, we can write this without vj by what we did in the above when we solved for vj ;

v = a1v1 + ...+ aj

(
−k1
kj

v1 − ...−
−kn
kj

vn

)
+ ...+ anvn

Collecting the coefficients:

v =

(
a1 −

k1
kj
aj

)
v1 + ...+

(
aj−1 −

k + j − 1

kj
aj

)
vj−1 +

(
aj+1 −

kj+1

kj
aj

)
vj+1 + ...+

(
an −

kn
kj
aj

)
vn

Which is a linear combination of v1, ..., vj−1, vj+1, ..., vn.
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Theorem 9. Let v1, ..., vn ∈ V , v1, ..., vn be linearly independent. Let vn+1 /∈ span{v1, ..., vn}. Then,
v1, ..., vn, vn+1 are linearly independent.

Proof. To show this, we will take an arbitrary linear combination that results in zero, and show that
this means that the coefficients must be zero. To that end, let

k1v1 + ....+ knvn + kn+1vn+1 = 0

be an arbitrary linear combination. We will use the linear independence of v1, ..., vn to show that
k1, ..., kn = 0. For kn+1, for a contradiction, assume that kn+1 6= 0. Then, solve for vn+1:

kn+1vn+1 = −k1v1 − ...− knvn

⇒ vn+1 = − k1
kn+1

v1 −
kn
kn+1

vn

Which is impossible, since we assumed that vn+1 /∈ span{v1, ..., vn}. This proves that k1, ..., kn, kn+1 =
0, which shows that v1, ..., vn must be linearly independent.

Definition 9 (Finite Dimensional). Let V be a vector space over K. V is called finite-dimensional
if V has a finite spanning set i..e, there are finitely many v1, ..., vn ∈ V such that they all span V :

V = span{v1, ..., vn}

Remark: Let (V,+, ·) be a vector space over K. Assume W ≤ V . Assume that V is finite-
dimensional. It is tempting to assume that W is finite-dimensional; this is true, but we do not have
any tools to prove it at the moment. This will be proven later.

Definition 10 (Infinite-Dimensional). V is called infinite-dimensional if it is not finite dimensional.

Methods of showing that a vector space is infinite dimensional are very different from methods of
showing that a vector space is finite-dimensional; for finite-dimensional, all we need to do is construct
one example of a finite spanning set. However, to prove a vector space is infinite dimensional requires
showing that no finite spanning set can possibly exist.

Example 18. Rn is finite-dimensional. This is trivial; write out the following finite spanning set:

Rn = span{e1, ..., en}

Example 19. c00 is infinite-dimensional. We will do a proof by contradiction. Assume that c00 is
finite-dimensional. Let s1, ..., sn be sequences in c00 such that c00 = span{s1, ..., sn}.

No more proofs; just summary.

Theorem 10 (Steinitz Exchange Lemma). Let V be a finite-dimensional vector space over K. Let
u1, ..., um ∈ V be linearly independent. Let v1, ..., vn be spanning (i.e., V = span{v1, ..., vn}). Then,
m ≤ n and there exist finitely many indices k1, ..., kn−m such that

u1, ..., um, vk, ..., vkn−m (4)

is spanning (i.e., we exchange m of the vectors v1, ..., vn by u1, ..., um without changing the span.)

2.6 Applications (Theoretical) of Steinitz Exchange Lemma

Theorem 11. Every subspace of a finite-dimensional vector space is finite-dimensional.

Definition 11 (Basis). Let V be a vector space over K. A subset B of V is called a basis of V if:

1. B is linearly independent.
2. B is spanning.

11



Example 20. For Rn, B = {e1, ..., en}.

Example 21. For Pn (recall these are polynomials of degree less than or equal to n), the basis would
be B = {1, x, ..., xn}.

Example 22. Set V = MAT(m× n,K). Let

Mij : (mij) where mkl is

{
0 if kl 6= ij

1 if kl = ij
(5)

Then, Mij is a basis for V .

Theorem 12. Every finite-dimensional vector space has a basis.

Theorem 13. Let V be a finite-dimensional vector space over K. Let {u1, ..., um} and {v1, ..., vn}
be two bases for V . Then m = n, i..e, any two bases of a finite-dimensional vector space contain the
same number of elements.

Definition 12 (Dimension). Let V be a finite-dimensional vector space over K. Let {v1, ..., vn} be
any basis for V . Then, n is the dimension of V .

Example 23. 1. Rn as a vector space over R has dimension n.
2. Cn as a vector space over C has dimension n.
3. Pn(K) as a vector space over K has dimension k + 1.
4. MAT(m× n,K) has dimension n×m.

Theorem 14. Let V be a finite-dimensional vector space over K. Let V = span{B1, ..., Bn} be a
basis for V . Let v ∈ V . Then, there exists a uniquely determined k1, ..., kn ∈ K such that

v = k1v1 + ...+ knvn (6)

Theorem 15. Let V be a finite-dimensional vector space over K. Let U ≤ V . then, dim(U) ≤
dim(V ).

Theorem 16. This theorem answers the question: when can we stop constructing bases? Let V
be a finite-dimensional vector space over K of dimension n. Let {v1, ..., vn} be a set of n linearly
independent vectors. Then, {v1, ..., vn} is a basis for V .

Theorem 17. Let V be a finite-dimensional vector space over K of dimension n. Let B = {v1, ..., vn}
be spanning. Then, B is a basis for V .

Theorem 18. Let V be a finite-dimensional vector space overK. Let U ≤ V and let Bu := {u1, ..., um}
be a basis for U . Then, Bu can be extended to a basis for V i.e, ∃ um+1, ..., un ∈ V such that

Bv := {u1, ..., um, um+1, ..., un} (7)

is a basis for V .

Theorem 19. Let V be a finite-dimensional vector space over K. Let U ≤ V and W ≤ V . Then:

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ) (8)

Example 24. Any two planes through the origin in R3 have non-trivial intersection, i.e., they intersect
in at least a line through the origin. One can use the above theorem to give a formal proof of this.

Definition 13 (Direct Sum). Let (V,+, ·) be a vector space over K. Let U ≤ V,W ≤ V . Define:

U +W := {u+ w | u ∈ U,w ∈W} (9)

Now, the sum is called direct if the following property holds: ∀ v ∈ U + W , the representation
v = u+ w, where u ∈ U and w ∈W is uniquely determined. We then write V = U ⊕W .

Theorem 20. A sum U +W of subspaces of V is direct ⇐⇒ U ∩W = {0}.
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3 Linear Maps

In mathematics one often wants to study maps between objects that preserve structures. In our case,
we want to study linear maps.

Definition 14 (Linear). Let V and W be vector spaces over K (it must be the same K). A function
L : V →W is called linear if it behaves well with respect to the operations that we have:

1. L(v1 + v2) = L(v1) + L(v2).
2. L(kv1) = kL(v1) ∀k ∈ K.

Theorem 21. Let L : V →W be linear. Then the zero vector is preserved:

L(0) = 0 (10)

Caution! in calculus the so called “linear” maps f : R → R, x 7→ ax + b is only linear if b = 0.
This is similar to the fact that lines in general are not subspaces.

Definition 15 (Subspaces Associated to Linear Maps: Kernel and Image). Let L : V →W be linear.
Then:

1. The kernel is defined as:

ker(L) := {v ∈ V | L(v) = 0} ⊆ V (11)

2. The image is defined as:

im(L) := {L(v) | v ∈ V } ⊆W (12)

Theorem 22. Let L : V →W be linear. Then:

1. The kernel is a subspace of V .
2. The image is a subspace of W .

Example 25. Let A ∈ MAT(m× n,K). Then, ker[K] is the null space of A and im[K] is the column
space of A.

Example 26. Consider the derivative map: D : P (R) → P (R), p 7→ p′. Then ker[D] = P0(R) (the
set of all constant polynomials) and im[D] = P (R) (everything).

Theorem 23. Let V,W be vector spaces over K. Let L : V →W be linear. Then L is injective ⇐⇒
ker[K] = {0}.

Theorem 24. This theorem tells us how we can construct linear maps. Let V be a finite-dimensional
vector space over K, let W be any vector space over K. Let {v1, ..., vn} be a basis for V . Let
{w1, ..., wn} be arbitrary vectors iN W . Then, there exists a uniquely determined linear map L : V →
W such that

L(v1) = w1, ..., L(vn) = wn (13)

This tells us that we can uniquely determined a linear map by its basis.

Theorem 25 (Dimension Formula – Fundamental Theorem). Let V be a finite-dimensional vector
space over K, W a vector space over K, L : V →W a linear map.

dim ker[L] + dim im[L] = dimV (14)

13



3.1 Endomorphisms

Definition 16 (Endomorphism). A linear map L : V → V is called a endomorphism.

Theorem 26. Let V be a finite-dimensional vector space over K, L : V → V an endomorphism.
Then

L bijective ⇐⇒ L injective ⇐⇒ L surjective (15)

Lemma 27. Let V be a finite-dimensional vector space over K and let U ≤ V such that dimU ≤
dimV . Then U = V .

3.2 Coordinate Vectors

Theorem 28. Let V be a finite-dimensional vector space and let B be an ordered basis for V . Then
[·]B : V → Kn, v 7→ [v]B is linear and bijective, i.e. such a map is called a isomorphism.

Theorem 29. Let L : V →W be an isomorphism. Then, L has an inverse map L−1 : W → V which
is linear.

Theorem 30. Let V be a vector space over K of dimension n. Then, V is isomorphic to Kn.

3.3 Representations of Linear Maps as Matrices

Theorem 31. Let L : V →W be linear, dimV = m, dimW = n. Let B = {v1, ..., vm} be a basis for
V and let B′ = {w1, ..., wn} be a bsis for W . Then

[L(v)]B′ = [L]B′,B[v]B (16)

∀v ∈ V .

Theorem 32. Let L : V →W be linear, where V and W are finite-dimensional. Let B be a basis for
V and let B′ be a basis for W and define A := [L]B′,B. Then:

1. ker[L] ' nullspace(A).
2. im[L] ' colspace(A).

the isomorphism is given by the following map:

ker[L]→ nullspace(A) (17)

v 7→ [v]B (18)

and

im[L]→ colspace(A) (19)

w 7→ [w]B′ (20)

3.4 Composition of Linear Maps

Theorem 33. Let L1 : UB → VB′ and L2 : VB′ → WB′′ be two linear maps. Let dimU = m,
dimV = k, and dimW = n. Then:

[L2 ◦ L1]B′′,B︸ ︷︷ ︸
n×m

= [L2]B′′,B′︸ ︷︷ ︸
n×k

◦ [L1]B′,B︸ ︷︷ ︸
k×m

(21)

(Remark: this is why matrix multiplication in Math 133 was defined in such a complicated way).
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3.5 Matrix Representations of Isomorphisms

Theorem 34. Let U, V be finite-dimensional vector spaces over a field K. Let L : V → W be
linear and let B,B′ be bases for V,W , respectively. Then, L is an isomorphism ⇐⇒ the matrix
representation map [L]B′,B is invertible.

3.6 Change of Basis

Two driving questions of this section:

1. If V is a finite-dimensional vector space over K, B,B′ are bases for V , then how are the coordinate
vectors of v ∈ V related for each of the bases? In other words, let v ∈ V . Given [v]B, how can
one compute [v]B′? We call this a change of basis.

2. Let L : V → V be linear, let B,B′ be bases for V . Given [L]B,B, how can one compute [L]B′,B′?

One can answer 1. question with the transition matrix or change of basis matrix

[v]B′ = [id]B′,B · [v]B (22)

One can answer 2. question similarly. For an invertible matrix P that goes from B to B′, we have:

[L]B′,B′ = P−1[L]B,BP (23)

This leads us to the notion of similar matrices.

Definition 17 (Similar). We say that two n×n matrices are similar there exists an invertible matrix
P ∈ MAT(n× n,K) such that

B = P−1AP (24)

3.7 The Normal Form Problem

Definition 18 (Equivalence Relation). Let S be a set. A relation is a subset of the cartesian product
S × S. An equivalence relation is denoted by ∼, and it holds for any relation such that the following
properties hold:

1. Every element in S is in a relation with itself:

∀x ∈ S, x ∼ x (25)

2. (Reflexivity): ∀x, y ∈ S, x ∼ y ⇐⇒ y ∼ x.
3. (Transitivity): ∀x, y, z ∈ S if x ∼ y ∧ y ∼ z ⇒ x ∼ z.

Equivalence relations partitions sets S into pairwise disjoint equivalence classes.

Definition 19 (Equivalence Class). Let S be a set. Let ∼ be an equivalence relation on S. Then,
the equivalence class of S is defined as:

[s]∼ := {t ∈ S | t ∼ s} (26)

where s ∈ S.

Theorem 35. Let S be a set, ∼ an equivalence relation on S. The equivalence classes of ∼ partition
S (i.e, every s ∈ S is contained in an equivalence class) and any two equivalence classes are either
identical or disjoint).

Theorem 36. Similarity is an equivalence relation on the set of all n × n matrices with coefficients
in K. That is, the relation

B ∼ A ⇐⇒ ∃P ∈ GL(n,K) such that B = P−1AP (27)

is an equivalence relationship.
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Motivating Question of the Normal Form Problem: can we within a given similarly class
find one representation or several that is “simpler” than the others? These can be more useful, since
they can shed light on certain mathematical details. This is the motivation behind eigenvectors and
eigenvalues.

Definition 20 (Invariant Subspace). Let L : V → V be a linear map. Let V be a vector space over
K, can be finite or infinite-dimensional. A subspace U ≤ V is called L-Invariant if

im[L(u)] ⊆ U (28)

for example, the kernel of any linear map is invariant since its mapped to zero, and 0 ∈ U .

Definition 21 (Eigenvector/Eigenvalue). Let (V,+, ·) be a vector space over K. Let L : V → V be
linear. Let v ∈ V , v 6= 0, such that L(v) = λv for some λ ∈ K. Then, v is called a eigenvector of L
to the eigenvalue λ.

Theorem 37. Let V be a finite-dimensional vector space over K. Let L : V → V be a linear map.
Let λ be an eigenvalue of L. Define Eλ := {v ∈ V | L(v) = λv}. Then, Eλ(L) ≤ V . This is called the
eigenspace of the eigenvalue λ.

Theorem 38. Eλ(L) is L-invariant.

Theorem 39. (Eigenvectors to distinct eigenvalues are linearly dependent). If L : V → V is linear,
v1, ..., vk are eigenvectors of L to eigenvalues λ1, ..., λk (which are pairwise distinct), then v1, ..., vk are
linearly independent.

Theorem 40 (Very Fundamental and Important). Let V be a vector space overK, V finite-dimensional.
Let L be an endomorphism. Then, L is diagonalisable, i.e., there is a basis B for which [K]B is a di-
agonal matrix ⇐⇒ V has a basis of eigenvectors.

Question: can we find a criteria for a linear map to be diagonalisable?

Theorem 41. Let V be a vector space over K with dimension of V equal to n. Let L : V → V be
a linear map. Assume that L has a basis of eigenvectors to pairwise distinct eigenvalues. Then, L is
diagonalisable.

Question: is every linear map L : V → V diagonalisable?

Answer: No. Consider the following examples:

Example 27. • Differentiation map D is not diagonalisable.

Theorem 42. Let L : V → V . Then, 0 is an eigenvalue of L ⇐⇒ L is not injective. In this case,
the eigenspace to the eigenvalue 0 is the kernel.

3.8 Characteristic Polynomial

Theorem 43. Similar matrices have the same characteristic polynomial.

3.9 Normal Form for Non-Diagonalisable Matrices

Definition 22 (Upper/Lower Triangular). Let A ∈ MAT(n× n,K). A matrix of the form:

A =


λ1 ∗ ∗ ∗ . . . ∗
0 λ2 ∗ ∗ . . . ∗
0 0 λ3 ∗ . . . ∗

0 0 . . .
. . . . . . ∗

0 0 0 0 0 λn

 (29)

is called upper triangular. The transpose of such a matrix is called lower triangular. Here,
λ1, ..., λn are the eigenvalues.
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Theorem 44. Let A ∈ MAT(n × n,C) and let A be upper triangular. Then, the elements on the
main diagonal are exactly the eigenvalues of A.

Theorem 45 (“Great Theorem”). Every matrix in MAT(n× n,C) is similar to an upper triangular
matrix.

4 Applications of Linear Algebra (to other fields of math...not real
life :-P)

4.1 Matrix Exponential

Recall from Math 222 the MacLaurin series of e:

ex = 1 + x+
x2

2!
+ ... (30)

=
∞∑
k=0

xk

k!
(31)

Can we do the same with matrices? That is, let X ∈ MAT(n× n,K). Does the limit

lim
N→∞

N∑
k=0

1

k!
Xk (32)

exist in the analytic sense? Yes – w/o justification, see analysis. The limit is denoted by:

exp(X) :=

∞∑
k=0

1

k!
Xk (33)

this is called the matrix exponential of X. This is used to solve ODEs. In short, the matrix
exponential of a diagonal matrix is really nice. One can diagonalise a non-diagonal matrix and take
the exponential. If the matrix is not diagonalisable, then one can upper-triangularise it. Then, the
matrix exponential gives you a recursive relation which you can then use a computer to solve.

This can also be used to solve difference equations.

5 Orthogonality: A quick introduction

5.1 Standard inner product on Rn

Recall the standard inner product on Rn. Let u = [u1, ..., un]t and v = [v1, ..., vn]t. Then:

〈u, v〉 := u1v1 + ...+ unvn (34)

This is called a bilinear form, i.e., it’s linear in each component. What does this mean?

〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉 (35)

〈ku, v〉 = k〈u, v〉 (36)

〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 (37)

〈u, kv〉 = k〈u, v〉 (38)

Now let’s go to C. Let z = x+ iy. Recall the complex conjugate of z, z:

z = x+ iy = x− iy (39)

We have the following:

zz = |z|2 (40)
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Let’s generalise this to Cn. How can we determine the length of a vector in Cn? To do this, first
define:

z∗ := zt (41)

then,

||z||2 = z∗z (42)

We will thus define the standard inner product on Cn as:

〈z, w〉 := z∗w = z1w1 + ...+ znwn (43)

5.2 Properties of the Standard Inner Product on Cn

Caution! The standard inner product on Cn is not bilinear; it is only sesqui-linear. Here, it is only
linear in its FIRST component:

〈z, v + w〉 = 〈z, w〉+ 〈z, v〉 (44)

〈z, kw〉 = k〈z, w〉 (45)

〈z + v, w〉 = 〈z, w〉+ 〈v, w〉 (46)

〈kz, w〉 = k〈z, w〉 (47)

Definition 23 (Orthogonal). Two vectors z, w ∈ Cn are called orthogonal if their inner product
〈z, w〉 = 0.

Definition 24 (Unit Vector). A vector v ∈ Kn is a unit vector if ||v|| =
√
〈v, v〉 = 1.

Definition 25. Vectors {v1, ..., vn} ∈ Kn are called orthogonal if {v1, ..., vn} are pairwise orthogonal.
They’re called orthonormal if they’re pairwise orthogonal and all the vi are unit vectors.

If {v1, ..., vk} are orthonormal and v = a1v1 + ... = anvn, then

aj = 〈vi, v〉 (48)

Definition 26 (Orthogonal). A matrix A ∈ MAT(n × n,R) is called orthogonal if the columns of
A are orthonormal (“for historical reasons – a bit of an unfortunate thing”).

Definition 27 (Unitary). A matrix A ∈ MAT(n × n,C) is called unitary if the columns of A are
orthonormal with respect to the inner product on Cn.

5.3 Application of Orthogonality (Orthogonal and Unitary Matrices)

5.3.1 Orthogonal Case

Let A ∈ MAT(n× n,R) be orthogonal. Then, its inverse is At.

5.3.2 Unitary Case

Let A ∈ MAT(n× n,C) be unitary. Then, its inverse is A∗, where A∗ := A
t
.

Question: let U ≤ Kn. Let B = {v1, ..., vk} be a basis for U . How can we find an orthogonal
or maybe orthonormal basis B′ for the same subspace?
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Answer: Gram-Schmidt process !! Let B = {v1, ..., vk} be a basis for U . Then, define the following
vectors:

u1 = v

u2 = v2 −
〈u1, v2〉
〈u1, u1〉

u1

u3 = v3 −
〈u1, v3〉
〈u1, u1〉

u1 −
〈u2, v3〉
〈u2, u2〉

u2

...

uk = vk −
〈u1, vk〉
〈u1, u1〉

u1 − ...−
〈uk−1, uk〉
〈uk−1, uk−1〉

uk−1

When the GS process terminates, make sure you normalise each vector to get an orthonormal basis
(as of now, you just have an orthogonal basis).

Theorem 46. Let P be orthogonal. Then, the row vectors of P are pairwise orthogonal unit vectors.

Theorem 47. 1. Let P , Q be orthogonal. Then, P−1 is orthogonal and the product PQ is or-
thogonal. The set of all orthogonal matrices form a subgroup of general linear with respect to
matrix multiplication:

O(n) := {P ∈ MAT(n× n,R) | P orthogonal } (49)

2. Let P,Q be unitary. Then P−1 is unitary and PQ is unitary. Moreover:

U(n) := {P ∈ MAT(n× n,C) | P unitary } (50)

is a group with respect to matrix multiplication, and is in fact a subgroup of GL(n,C).

5.4 Orthogonality and Unitary: Diagonalisation and Upper Triangularisation

Question: what matrices can be diagonalised or upper triangularised by an orthogonal matrix? What
matrix can be diagonalised or upper triangularised by a unitary matrix?

Theorem 48 (Schur). Every matrix A ∈ MAT(n × n,C) can be upper-triangularised by a unitary
matrix.

Corollary 1. If A ∈ MAT(n× n,R) has only real eigenvalues, A can be upper-triangularised via an
orthogonal matrix.

Theorem 49. Let A ∈ Symm(n× n,R).

1. Then, all eigenvalues of A are real.
2. Eigenvectors to distinct eigenvalues of A are automatically orthogonal.

Theorem 50. Let A ∈ Symm(n × n,R). and let P ∈ O(n). Then, B = P−1AP = P tAP is again
symmetric.

Theorem 51 (Spectral Theorem in R). A matrix A ∈ MAT(n × n,R) is diagonalisable via an
orthogonal matrix P ⇐⇒ A is symmetric.

5.4.1 Spectral Theorem: Complex Case

Question: what types of matrices can be diagonalised via a unitary matrix?

Definition 28 (Hermitian). A matrix A ∈ MAT(n × n,C) is called hermitian if A∗ = A (complex
equivalent of a real symmetric matrix).
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One may conjecture that A is diagonalisable by a unitary matrix if A is hermitian. However, while
it is true that all Hermitian matrices are diagonalisable via a unitary matrix, the converse does not
hold. We need some more definitions.

Definition 29 (Normal Matrix). A matrix A ∈ MAT(n× n,C) is called normal if AA∗ = A∗A.

Many important matrices are normal.

Theorem 52. The following classes of matrices are normal:

1. Real symmetric matrices.
2. Skew-symmetric real matrices (all eigenvalues are imaginary).
3. Real orthogonal matrices (here, the determinant’s absolute value is one; resembles rotations and

reflections).
4. Hermitian matrices
5. Skew-Hermitian matrices (A∗ = −A).
6. Unitary matrices.

Remark. If A is normal, P ∈ GL(n,C), then P−1AP , in general, is not normal. However...

Theorem 53. Let A ∈ MAT(n× n,C), P ∈ U(n). Then, P−1AP = P ∗AP is normal.

Theorem 54. Let A ∈ MAT(n× n,C) be both normal and upper triangular. Then, A is a diagonal
matrix.

Theorem 55 (Complex Spectral Theorem). Let A ∈ MAT(n× n,C). Then, A is diagonalisable by a
unitary matrix ⇐⇒ A is normal.

Definition 30. A real symmetric matrix is called...

1. Positive definite if all eigenvalues of A are positive.
2. Positive semi-definite if all eigenvalues are greater or equal than zero.
3. Negative definite if all eigenvalues are strictly less than zero.
4. Negative semidefinite if all eigenvalues are less than or equal to zero.

5.5 Applications of the Real Spectral Theorem

5.5.1 Real Quadratic Forms

Definition 31 (Real Quadratic Form). A real quadratic form is a purely quadratic polynomial in
n variables with real coefficients. For example:

X2
1 + 4X1X2 +X2

2 (51)

Question: How can we determine the range of a quadratic form?
Question: Can every quadratic form be written as a sum or difference of squares?

Definition 32 (Positive Definite). A quadratic form X := Q(X1, ..., Xn) is called positive definite
if Q(x) ≥ 0 ∀X ∈ Rn and Q(x) = 0 ⇐⇒ X = 0. One can equivalently define negative definite.

Every quadratic form Q(X) can be written in “matrix form”, i.e;

Q(X) = XtAX (52)

6 Inner Product Spaces

There is no notion of length in an abstract vector space. Therefore, the aim is to introduce a notion of
lengths and angles to abstract vector spaces, i.e., generalise what we’ve done with the standard inner
product.

We generalise between K = R and K = C.
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6.1 K = R

Definition 33 (Inner Product Space). Let V be a vector space over R. A function: 〈, 〉 : V × V → R
is called an inner product on V if:

1. 〈, 〉 is bilinear
2. 〈, 〉 is symmetric
3. 〈, 〉 is positive definite

A vector space with an inner product is called a inner product space.

Example 28. The standard inner product on Rn, 〈x, y〉 := xty is an inner product.

Example 29. Let V = Rn a positive definite n × n (which implies symmetric on R or hermitian on
C) matrix A gives us an inner product:

〈x, y〉 := xtAy (53)

Example 30. Let V = C[a, b]: the vector space of all continuous functions on [a, b]. A useful inner
product in analysis is:

〈f, g〉 :=

∫ b

a
f(x)g(x)dx (54)

6.2 Complex Inner Product Spaces

Definition 34 (Complex Inner Product Space). Let V be a V S over C, 〈, 〉 : V × V → C such that

1. 〈, 〉 is sesqui-linear.
2. Conjugate symmetry: ∀z, w ∈ V :

〈z, w〉 = 〈w, z〉 (55)

3. Positive definite.

Then, (V, 〈, 〉) is called a complex inner product space.

Example 31. Let A ∈ MAT(n× n,C) be a Hermitian positive definite matrix. Then 〈z, w〉 := z∗Aw
is a complex inner product on Cn.

6.3 Geometry on a Vector Space

We can define the length on an IPS as:

||x|| :=
√
〈x, y〉 (56)

Claim: this satisfies all of the conditions in what mathematics is called a norm.

Definition 35 (Norm). Let (V,+, ·) be a vector space over K. Then, || · || (norm) is a function that
assigns a length to a vector: V → R+

0 = [0,∞[ such that

1. ||x|| ≥ 0 ∀x ∈ V and ||x|| = 0 ⇐⇒ x = 0.
2. ||kx|| = |k|||x|| ∀k ∈ K,x ∈ V .
3. Triangle Inequality: ||x+ y|| ≤ ||x||+ ||y||.

Theorem 56. Let V be an IPS over K, ||x|| :=
√
〈x, x, 〉 ∀x ∈ V . Then, || · || is a norm on V .

Theorem 57 (Cauchy-Schwarz Inequality). Let V be an IPS over K. Then:

|〈x, y〉| ≤ ||x||||y|| (57)

∀x, y ∈ V .
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Lemma 58. 〈a+ λb, a+ λb〉 = 〈a, a〉+ λ〈a, b〉+ λ〈a, b〉+ λλ〈b, b〉

Theorem 59 (Triangle Inequality). Let x, y ∈ V where V is an IPS. Then:

||x+ y|| ≤ ||x||+ ||y|| (58)

(this is the most important theorem in maths).

Lemma 60. Let z ∈ C. Then:

1. z + z = 2 Re(z)
2. |Re(z)| ≤ |z|

Definition 36 (Angle). Let V be a real IPS with an inner product 〈, 〉. Let x, y 6= 0 in V . Let
ϕ ∈ [0, π] be uniquely determined such that

cos(ϕ) =
〈x, y〉
||x||||y||

∈ [−1, 1] (59)

(where the inclusion is thanks to Cauchy Schwarz). Then ϕ is the angle between x and y.

Definition 37. Let V be a real IPS. We say that x and y are orthogonal if 〈x, y〉 = 0. Note that
for x, y 6= 0, this is equivalent to the angle between x and y being π/2.

Definition 38. Let V be an IPS over R. We say that x, y ∈ V are orthogonal ⇐⇒ their inner
product is zero.

Theorem 61 (Pythagorean’s Theorem). Let V be an IPS. Let X,Y ∈ V be orthogonal. Then

||X + Y ||2 = ||x||2 + ||Y ||2 (60)

7 Fourier Series in 30 Minutes [not examinable]

Consider V the vector space of all continuous functions on R endowed with the inner product∫ π

−π
f(x)g(x)dx (61)

and consider the following set

S := {1, sin(x), cos(x), sin(2x), cos(2x), ...} (62)

Claim: the functions in S are pairwise orthogonal:∫ π

−π
sin(nx) cos(mx)dx = 0 (63)

∀n ∈ N,m ∈ N0. This follows from the product-to-sum trigonometric identities. Moreover, observe:∫ π

−π
sin2(nx)dx = π ∀n ∈ N (64)∫ π

−π
cos2(nx)dx = π ∀n ∈ N (65)∫ π

−π
1dx = 2π for n = 0 (66)

Now recall the following: Let’s work in Rn with the standard inner product. Let v1, ..., vn be pairwise
orthogonal, non-zero vectors. Then, we may write:

v = a1v1 + ...+ anvn (67)
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for any vector v ∈ Rn. Recall that we recovered the coefficients a1, ..., aj previously with the formula:

aj =
〈vj , v〉
〈vj , vj〉

(68)

(the proof for that only used linearity in the second argument and positive definiteness). Now let f(x)
represent a “signal”:

f(x) = c0 + [a1 cos(x) + ...+ an cos(nx)] + [b1 sin(x) + ...+ bn sin(nx)] (69)

We know that f(x) is a linear combination of the members in S. Assume that we are given an f(x).
How can we recover the linear combination of sines and cosines? Well, we simply apply the
formula:

an =
〈cos(nx), f(x)〉
〈cos(nx), cos(nx)〉

(70)

=
1

π

∫ π

−π
f(x) cos(nx)dx (71)

This is all linear algebra! No calculus or analysis! Similarly for the bn’s:

bn =
〈sin(nx), f(x)〉
〈sin(nx), sin(nx)〉

(72)

=
1

π

∫ π

−π
f(x) sin(nx)dx (73)

and we can recover c0:

c0 =
1

2π

∫ π

−π
f(x)dx (74)

Drawback: in linear algebra, all sums must be finite. Not all functions can be represented as a finite
sum of trigonometric functions; they must also be periodic.

Question: Can f(x) be represented as an infinite series? Does it converge?
We will use these formulae as a motivation for the definition of a Fourier series.

Definition 39 (Fourier Series). Let f(x) be periodic and continuous with period 2π. Define:

an :=
1

π

∫ π

−π
f(x) cos(nx)dx (75)

bn :=
1

π

∫ π

−π
f(x) sin(nx)dx (76)

c0 :=
1

2π

∫ π

−π
f(x)dx (77)

Now, the analysis comes; two questions:

1. Does it converge?
2. Will we get f(x) back?

If it does converge, we obtain the Fourier Series of f , which is entirely generated by orthogonality
relations. There is a lot of substantial literature covering these two questions.

Theorem 62 (Dirichlet’s Theorem). Let F be a periodic function with period 2π and let it be
piecewise continuous and continuously differentiable on [−π, π]. Then, the Fourier series of f converges
at all points where f is continuous, and it represents f .

This is pretty good news as long as your functions are reasonably well-behaved.

23


	Introduction
	Abstract Vector Spaces
	Many Examples of Vector Spaces
	Consequences of the Axioms
	Subspaces
	Linear Combination and Span
	Linear Independence and Dependence
	Applications (Theoretical) of Steinitz Exchange Lemma

	Linear Maps
	Endomorphisms
	Coordinate Vectors
	Representations of Linear Maps as Matrices
	Composition of Linear Maps
	Matrix Representations of Isomorphisms
	Change of Basis
	The Normal Form Problem
	Characteristic Polynomial
	Normal Form for Non-Diagonalisable Matrices

	Applications of Linear Algebra (to other fields of math...not real life :-P)
	Matrix Exponential

	Orthogonality: A quick introduction
	Standard inner product on Rn
	Properties of the Standard Inner Product on Cn
	Application of Orthogonality (Orthogonal and Unitary Matrices)
	Orthogonal Case
	Unitary Case

	Orthogonality and Unitary: Diagonalisation and Upper Triangularisation
	Spectral Theorem: Complex Case

	Applications of the Real Spectral Theorem
	Real Quadratic Forms


	Inner Product Spaces
	K = R
	Complex Inner Product Spaces
	Geometry on a Vector Space

	Fourier Series in 30 Minutes [not examinable]

