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1 Borel Sets

We will work for some time on R exclusively. Before beginning Measure
Theory: a quick recap of Topology.

Definition 1.1 (Open Set). A subset U ⊂ R is called open if either U = ∅
or else

∀x ∈ U,∃r > 0 such that (x− r, x+ r) ⊂ U

Some examples of open sets: ∅,R, (a, b), (a,∞), (−∞, a). There are many
more because any union of an open set is still open and any finite intersection
of open sets is open.

Definition 1.2 (Closed Set). F ⊂ R is called closed if R \F := F c is open.

F is closed ⇐⇒ F contains all points x ∈ R which have the property that
∀r > 0, (x− r, x+ r) ∩ F ̸= ∅.

If F ⊂ R is any set, the closure of F , denoted by F , is the smallest closed
set that contains F .

Definition 1.3 (Compact). A subset G ⊂ R is compact if given any
collection {Ui}i∈I of open sets Ui ⊂ R with G ⊂ ∪i∈IUi, there exists J ⊂ I,
J finite, such that G ⊂ ∪j∈JUj

*Notes from the lectures of Valentino Tosatti
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Theorem 1.1 (Heine-Borel). G ⊂ R is compact ⇐⇒ G is closed and
bounded. To be bounded means G ⊂ (a, b) for some a, b ∈ R.

Corollary 1.1.1 (Nested Set Theorem). Let {Fn}∞n=1 be a countable collection
of non-empty, bounded, closed sets Fn ⊂ R with Fn+1 ⊂ Fn∀n, then

∩∞
n=1Fn ̸= ∅

Proof. Suppose ∩∞
n=1Fn = ∅ so let Un = F c

n be open sets, such that ∪∞
n=1Un =

R. We also have that Un ⊂ Un+1, since the Fn were nested. Now F1 is
compact by Heine-Borel and F1 ⊂ ∪∞

n=1Un ⇒ by compactness I can find a
finite subcover of F1, say F ⊂ ∪N

n=1Un = UN = F c
N

On the other hand FN ⊂ F1 by the nested property which implies FN = ∅
which is a contradiction.

2 Measure Theory

We want to measure the size of a set. We will deal with a subset of R.

It turns out that one needs to select a class of subsets of R that one wants
to measure. This class of subsets will have certain properties which are as
follows.

Definition 2.1 (σ-algebra). A collection A of subsets of R is called a
σ-algebra if it satisfies

1. ∅ ∈ A

2. If A ∈ A then Ac ∈ A

3. If {An}∞n=1 ⊂ A then ∪∞
n=1An ∈ A

Observe the following:

� R ∈ A always
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� If {An}Nn=1 ⊂ A then ∪N
n=1An ∈ A (just define An = ∅ for n > N)

� If {An}∞n=1 ⊂ A then ∩∞
n=1An ∈ A (since (∩∞

n=1An)
c = ∪∞

n=1A
c
n)

� If A,B ∈ A then A \B ∈ A too since A \B = A ∩Bc

Examples:

1. A = {∅,R} “Minimal σ-algebra”

2. A = P(R) = Collection of all subsets of R. “Maximum σ-algebra”

In fact, if A is any σ-algebra, then {∅,R} ⊆ A ⊆ P(R)

For better examples, let F be any collection of subsets of R. I want to make
F into a σ-algebra. Definem = {A | A is a σ-algebra that satisfies F ⊂ A}.
m ̸= ∅ since it contains P(R)

If A,B ∈ m, I can define A∩B = {A ⊂ R | A ∈ A and A ∈ B} and I can do
the same for ∩i∈IA arbitrary intersection of σ-algebra is still a σ-algebra

Define F̂i = ∩A∈mA as a σ-algebra and F ⊂ F̂ and it is the minimal
σ-algebra with these properties. IfG is a σ-algebra with F ⊂ G, then F̂ ⊂ G.
F̂ is the σ-algebra generated by F . Concretely, F̂ consists of all subsets of
R that can be constructed by applying countable unions, intersections, and
complements to elements of F .

Definition 2.2 (Borel Sets). The σ-algebra B of Borel Sets is the σ-algebra F̂
generated by

F = {U ⊂ R | U open }

Remark. B is also the σ-algebra generated by the family of all closed subsets
of R

Singletons {x} ⊂ R are closed so if A ⊂ R is at most countable then A is
Borel. (e.g Q ⊂ R) (e.g R \Q)

Not all Subsets of R are Borel. One can actually show that the cardinality
of B is the same as the cardinality of R. On the other hand P(R) has strictly
larger cardinality.
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3 Lebesgue Outer Measure

We are hoping to measure the size of subsets of R. Ideally we would like to
find or construct a function

m : P(R) → R≥0 ∪ {+∞} = [0,∞]

Which satisfies the following measure requirements:

1. If I = [a, b] or (a, b) or [a, b), or (a, b], a, b ∈ R, a ≤ b then m(I) =
b− a = measure of interval

2. m is translation invariant. i.e if E ⊂ R and x ∈ R, let E+x = {y+x |
y ∈ E} then m(E + x) = m(E)

3. If {Ej}nj=1 is a finite collection of pairwise disjoint Ej ⊂ R then

m
(
∪n
j=1Ej

)
=

n∑
j=1

m(Ej)

4. The same as (3) except for n = ∞
Theorem 3.1. There is no such m satisfying all 4 requirements

The proof for this will come later. The solution for this is that we do not
try to measure all subsets of R. So we have m : P(R) → [0,∞] but now we
will just be happy with m : A → [0,∞] where A is a σ-algebra which has
enough elements. For example A > B.

We will follow H. Lebesgue as we proceed in two steps.

Step 1: construct Lebesgue outer measure m⋆ : P(R) → [0,∞] satisfying
requirements 1,2, and 3.

Step 2: Use m⋆ to define A and let m ⊂ m⋆ | A

To create this Lebesgue outer measure on R we satisfy a weakened version of
requirement (3) that can be called (3w). For any countably infinite collection
{Ej}∞j=1 of arbitrary subsets Ej ⊂ R

m⋆(∪∞
j=1Ej) ≤

∞∑
j=1

m(Ej)
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Theorem 3.2 (Lebesgue Outer Measure). There is a map m⋆ : P(R) →
R≥0 ∪ {+∞} that satisfies the measure requirements 1, 2, and 3w.

This m⋆ is called the Lebesgue outer measure on R.

How do we define outer measure m⋆(A)?

Observe that any A ⊆ R can be covered by some countable infinite collection
{Ij}∞j=1 of bounded open intervals, which are allowed to be empty, but we
do not assume that Ij be pairwise disjoint.

For example: Ij = (−j, j), j = 1, 2, 3 . . .

Let

CA = {{Ij}∞j=1 | Ij bounded open intervals such that A ⊂ ∪∞
j=1Ij}

CA ̸= ∅ by our example so for each {Ij} ∈ CA, I can consider

∞∑
j=1

ℓ(Ij) ∈ R≥0 ∪ {+∞} (ℓ denotes length)

Definition 3.1 (Outer Measure).

m⋆(A) := inf
{Ij}∈CA

∞∑
j=1

ℓ(Ij) ∈ R≥0 ∪ {+∞}

This defines a map m⋆ : P(R) → R≥0 ∪ {+∞}

Simple Properties:

� Monotonicity : If A ⊆ B then m⋆(A) ≤ m⋆(B). Indeed by definition
CB ⊆ CA hence the infimum over CB is ≥ than the infimum over CA.

� Empty Set : m⋆ (∅) = 0. Given any 1 > ϵ > 0, let Ij = (−ϵj , ϵj), j =
1, 2, . . . {Ij} ∈ C∅ and

∑∞
j=1 ℓ(Ij) = 2

∑∞
j=1 ϵ

j = 2ϵ
1−ϵ from the geometric

series going to zero so m⋆ (∅) ≤ 2ϵ
1−ϵ ∀0 < ϵ < 1
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� If A ∈ R is finite or countable infinite then m⋆ (A) = 0. Indeed
enumerate all elements of A by {aj}∞j=1. (If A is finite say |A| = n let

aj = an for all j > n). For any 0 < ϵ < 1, let Ij =
(
−ϵj + aj , aj + ϵj

)
so A ⊆ ∪∞

j=1Ij and
∑∞

j=1 ℓ(Ij) =
2ϵ
1−ϵ hence as before, m⋆ (A) = 0. For

example m⋆ (Q) = 0

We will now prove that the Lebesgue outer measure satisfies 1, 2, and 3w of
the measure requirements.

Proof of Property 1: i.e m⋆ (I) = ℓ(I) for any interval I ⊆ R

Assume that I = [a, b], a < b are finite numbers. Assume that I is a bounded
closed interval. Our goal is to show that m⋆ (I) = b − a. One direction of
inequality is easy to prove, the other is quite tedious and will be left out.

For any ϵ > 0 let I1 = (a − ϵ, b + ϵ) > I, let Ij = ∅, j ≥ 2 so {Ij} ∈ CI ⇒
m⋆ (I) ≤

∑∞
j=1 ℓ(Ij) = b− a+ 2ϵ. Let ϵ→ 0 and we obtain m⋆ (I) ≤ b− a.

Proof of Property 2: i.e ∀A ⊂ R, ∀x ∈ R, m⋆ (A+ x) = m⋆ (A)

CA and CA+x are naturally in bijection via {Ij} ↔ {Ij + x}. Furthermore
ℓ(Ij + x) = ℓ(Ij)

m⋆ (A+ x) = inf
{Ij+x}∈CA+x

∞∑
j=1

ℓ(Ij + x)

= inf
{Ij}∈CA

∞∑
j=1

ℓ(Ij) = m⋆ (A)

Proof of Property 3w: i.e If {Ej}nj=1 is a finite collection of pairwise disjoint

Ej ⊂ R then m⋆
(
∪n
j=1Ej

)
≤

∑n
j=1m

⋆ (Ej)

If m⋆ (Ej) = +∞ for some j, then the property holds. We may assume that
m⋆ (Ej) < +∞ ∀j. Let ϵ > 0. By the definition of infimum, for each j ≥ 0,
there is

{Ij,k}∞k=1 ∈ CEj such that
∞∑
k=1

ℓ(Ij,k) < m⋆ (Ej) + ϵ2−j
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Thus {Ij,k}∞k=1 is still countable and it covers ∪∞
j=1Ej meaning it belongs to

C∪∞
j=1
Ej , so by definition

m⋆

 ∞⋃
j=1

Ej

 ≤
∞∑
j=1

∞∑
k=1

ℓ(Ij,k) <
∞∑
j=1

(m⋆ (Ej) + ϵ2−j) =
∞∑
j=1

m⋆ (Ej) + ϵ

Then let ϵ→ 0. Clearly, by taking all Ej = ∅ except finitely many, we have
the same subadditivity 3w for finite collections.

Corollary 3.2.1. m⋆ ([0, 1] ∩ (R \Q)) = 1 = ℓ([0, 1])

Proof.

m⋆ ([0, 1] ∩ (R \Q)) ≤ m⋆ ([0, 1]) = 1

≤ m⋆ ([0, 1] ∩ (Q)) +m⋆ ([0, 1] ∩ (R \Q))

≤ 0 + 1

Corollary 3.2.2. R \Q is uncountable

Proof. If not, then

m⋆ (R \Q) = 0 ≥ m⋆ ([0, 1] ∩ (R \Q)) = 1

4 The σ-Algebra Of Lebesgue Measurable Sets

m⋆ does not satisfy the third measurability requirement without the weak
3w condition. We can construct some examples to prove this. A,B ⊂
R, A ∩B = ∅, such that m⋆ (A ∪B) < m⋆ (A) +m⋆ (B) later in the class.

The idea to avoid this problem is to look at “reasonable” subsets of R for
which this paradox disappears.

Definition 4.1 (Carathéodory). E ⊆ R is called (Lebesgue) measurable if
∀A ⊂ R

m⋆ (A) = m⋆ (A ∩ E) +m⋆ (A ∩ Ec)
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Remark. This is equivalent to Lebesgue’s definition: E is measurable if and
only if

∃U ⊂ R such that E ⊂ U and m⋆ (U \ E) < ϵ

But we will discuss this later.

Suppose that A is measurable and B ⊂ R is any set such that A ∩ B = ∅
then

m⋆ (A ∪B) = m⋆

(A ∪B) ∩A︸ ︷︷ ︸
=A

+m⋆

(A ∪B) ∩Ac︸ ︷︷ ︸
=B


Going back to our counter example for m⋆ and measurability requirement
3, A or B would have to be unmeasurable.

Here’s another observation: For E,A ⊂ R arbitrary sets we have

A = (A ∩ E) ∪ (A ∩ Ec)

So by 3w m⋆ (A) ≤ m⋆ (A ∩ E) + m⋆ (A ∩ Ec), so E is measurable ⇐⇒
∀A ⊂ R

m⋆ (A) ≥ m⋆ (A ∩ E) +m⋆ (A ∩ Ec)

This holds trivially for m⋆ (A) = ∞

Example 1: ∅ is measurable. ∀A ⊂ R

m⋆ (A) = ������
m⋆ (A ∩ ∅) +m⋆ (A ∩ R)

Example 2: R is measurable. ∀A ⊂ R

m⋆ (A) = m⋆ (A ∩ R) +m⋆ (A ∩ ∅)

Proposition. E ⊂ R with m⋆ (E) = 0, then E is measurable.

Corollary. Every countable set is measurable. Q measurable → R \ Q are
measurable

Proof. Let A ⊂ R be any set

A ∩ E ⊂ E ⇒ m⋆ (A ∩ E) ≤ m⋆ (E) = 0

A ∩ Ec ⊂ A⇒ m⋆ (A ∩ Ec) ≤ m⋆ (A)

So m⋆ (A) ≥ m⋆ (A ∩ Ec) +������
m⋆ (A ∩ E)
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Our goal is to show that Lebesgue measurable sets L = {E ⊂ R | E is measurable}
is a σ-algebra on R. We just need to show that if {Ej}∞j=1 with Ej ∈ L, ∀j,
then ∪∞

j=1Ej ∈ L

Proposition. If {Ej}nj=1 ⊂ L then ∪n
j=1Ei ∈ L

Proof. We use mathematical induction. n = 1 is trivial so we set the base
case as n = 2. E1, E2 are measurable, Let A ⊂ R be any set

m⋆ (A) = m⋆ (E1 ∩A) +m⋆ (A ∩ Ec
1)

= m⋆ (A ∩ E1) +m⋆ ((A ∩ Ec
1) ∩ E2) +m⋆ ((A ∩ Ec

1) ∩ Ec
2)

= m⋆ (A ∩ E1) +m⋆ ((A ∩ Ec
1) ∩ E2) +m⋆ (A ∩ (Ec

1 ∩ Ec
2))

= m⋆ (A ∩ E1) +m⋆ ((A ∩ Ec
1) ∩ E2) +m⋆ (A ∩ (E1 ∪ E2)

c)

≥ m⋆ (A ∩ (E1 ∪ E2)) +m⋆ (A ∩ (E1 ∪ E2)
c) (3w)

So E1 ∪ E2 ∈ L.

Induction step n ≥ 2

n⋃
j=1

Ej =

n−1⋃
j=1

Ej

 ∪ En ∈ L by the n = 2 case

To prove that this also applies to countable sets, we use

Proposition (Analog of measurability requirement 3 for m⋆ | L). Suppose
A ⊂ R is any set and {Ej}nj=1 is a finite disjoint collection of sets Ej ∈ L,
then

m⋆

A ∩
n⋃

j=1

Ej

 =
n∑

j=1

m⋆ (A ∩ Ej)

In particular take A = R to get m⋆
(⋃n

j=1Ej

)
=

∑
m⋆ (Ej)

Proposition. If {Ej}∞j=1 is a countable family with Ei ∈ L ∀j, then ∪∞
j=1Ej ∈

L. In particular, L is a σ-algebra.

We would like to have the Borel sets be measurable, i.e B ⊂ L. Recall that
B = F̂ , where F = {U ⊂ R | U is open } and ^ denotes the σ-algebra.
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This results follows from the measurability of intervals combined with the
measurability of the union of measurable sets.

Proposition. If I ⊆ R is any interval, then I is measurable.

Theorem 4.1. L = Lebesgue Measurable subsets of R form a σ-algebra that
contains the Borel σ-algebra B

Proof. We already know that L is a σ-algebra. If we can show that L
contains all open sets U ⊂ R, then L (being a σ-algebra) must contain B
which is the σ-algebra generated by open sets. Now if U ⊂ R is any (non
empty) open set then by definition ∀x ∈ U,∃Ix ∋ x where Ix is an open
interval and Ix ⊂ U .

We want to choose Ix to be the “maximal” such. So by assigning

ax := inf{z ∈ R | (z, x) ⊂ U} satisfies ax < x

and
bx := sup{y ∈ R | (x, y) ⊂ U} satisfies x < bx

so Ix := (ax, bx) is an open interval that contains x and by construction
Ix ∈ U . It is the largest such, in the sense that if ax > −∞ then ax /∈ U
and symmetrically if bx <∞ then bx /∈ U .

For any y ∈ Ix, we have y < bx, so there is z > y such that (x, z) ⊂ U so y ∈
U . Indeed, if ax ∈ U then since U open, ∃r > 0 such that (ax−r, ax+r) ⊂ U
contradicting the definition of ax.

So U = ∪x∈UIx. It is a huge union, however if x, x′ ∈ U, x ̸= x′, then either
Ix ∩ Ix′ = ∅, or if not then necessarily Ix = Ix′ , since Ix ∪ Ix′ is then another
open interval that contains x & x′ and is a subset of U , so by maximality
it must equal Ix & Ix′ . So, throwing away all repeated Ix, we can write
U = ∪i∈IIx for some I where the intervals Ixi are pairwise disjoint. By
density of Q ⊂ R, each such interval contains a different rational number
ri ∈ Ixi . Since Q is countable, I is at worst countable.

So every U open is an at most countable disjoint union of open intervals.
Since such intervals belong ot L, and L is a σ-algebra, it follows that every
U open is in L as desired.
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Proposition (The σ-algebra L is also translation invariant). If E ⊂ L and
x ∈ R then E + x ∈ L

Proof. Given any A ⊂ R,

m⋆ (A) = m⋆ (A− x)

= m⋆ ((A− x) ∩ E) +m⋆ ((A− x) ∩ Ec)

= m⋆ (A ∩ E + x) +m⋆ (A ∩ (E + x)c) (m⋆ translation invariant)

Remark. If A ∈ L with m⋆ (A) < ∞, and B ⊂ R is any set with A ⊂ B,
then

m⋆ (B \A) = m⋆ (B)−m⋆ (A)

5 Outer and Inner Approximation of Lebesgue Measurable
Sets

Definition 5.1 (Gebiet-Durchshnitt). A subset A ⊂ R is called a Gδ if
A = ∩∞

i=1Ai where Ai are all open (possibly empty).

Definition 5.2 (Fermé-Somme). A subset A ⊂ R is called a Fσ if A =
∪∞
i=1Ai where Ai are all closed (possibly empty).

Clearly, A is Gδ ⇐⇒ Ac is Fδ. Also clearly, all Gδ and Fσ sets are Borel.
Of course not all Gδ are open, e.g [0, 1] = ∩∞

i=1

(
−1

i , 1 +
1
i

)
and not all Fσ

are closed. e.g. (0, 1) = ∪∞
i=1

[
1
i , 1−

1
i

]
Q is clearly Fσ, so R \ Q is Gδ. With this, we can give several equivalent
formulations of measurability.

Theorem 5.1. Let E ⊂ R be any set, then the following are equivalent:

1. E ∈ L

2. ∀ϵ > 0, ∃U ⊃ E, U open, m⋆ (U \ E) < ϵ
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3. ∃G ⊂ R a Gδ set, G ⊃ E, with m⋆ (G \ E) = 0

4. ∀ϵ > 0, ∃F ⊂ E, F closed, m⋆ (E \ F ) < ϵ

5. ∃F ⊂ R a Fσ set, F ⊂ E with m⋆ (E \ F ) = 0

Proposition. For an E ∈ L with m⋆ (E) < ∞. Then ∀ϵ > 0, ∃{Ij}nj=1 a
finite disjoint family of open intervals so that if we let U = ∪n

j=1Ij (open)
then m⋆ (E∆U) < ϵ.

6 Lebesgue Measure

We can now take m⋆ and restrict it to L. m⋆ |L.

Definition 6.1 (Lebesgue Measure). This Lebesgue Measure is a function

m := m⋆ |L: L → R≥0 ∪ {+∞}

This means that for E ∈ L we define m(E) = m⋆ (E). Clearly, m satisfies
the measurability requirements 1, 2, & 3 as we have proved earlier. It also
satisfies requirement 4 which was requirement 3 for countably infinite sets.

Proposition. If {Ej}∞j=1 is a countably infinite collection of pairwise disjoint
sets Ej ∈ L (possibly empty), then ∪∞

j=1Ej ∈ L and

m

 ∞⋃
j=1

Ej

 =
∞∑
j=1

m(Ej)

Proof. We proved earlier that ∪∞
j=1Ej ∈ L and that

m

 ∞⋃
j=1

Ej

 ≤
∞∑
j=1

m(Ej)

For the opposite inequality, for each n we proved earlier that

m

 n⋃
j=1

Ej

 =
n∑

j=1

m(Ej)
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But ∪n
j=1Ej ⊂ ∪∞

j=1Ej , hence

m

 ∞⋃
j=1

Ej

 ≥ m

 n⋃
j=1

Ej

 =
n∑

j=1

m(Ej) ∀n

Take the limit as n→ ∞ to get

m

 ∞⋃
j=1

Ej

 ≥
∞∑
j=1

m(Ej)

As desired. This argument shows that measurability requirement 3 and 3w
together imply 4.

7 Non-Measurable Sets

We saw earlier that if E ⊂ R satisfies m⋆ (E) = 0 then E ∈ L. In particular,
∀F ⊂ E, m⋆ (F ) ≤ m⋆ (E) = 0, so F ∈ L too. This however totally fails
when m⋆ (E) > 0.

Theorem 7.1 (Vitali). For any E ⊂ R with m⋆ (E) > 0, there is an F ⊂ E
which is NOT measurable. The construction uses the axiom of choice (and
it is really needed).

The proof of this theorem and construction of a Vitali set are currently
omitted due to length.

8 Cantor Set

We showed earlier that if A ⊂ R is countable then A ∈ L and m(A) = 0.
How about the converse; if A ∈ L has m(A) = 0, is A countable? No!

Theorem 8.1 (Cantor). There is a closed, uncountable set C with m(C) = 0
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Start with an interval I = [0, 1] and remove the middle 1
3 , namely (13 ,

2
3).

C1 := I \
(
1

3
,
2

3

)
=

[
0,

1

3

]⋃[
2

3
, 1

]
C2 := C1 \

((
1

9
,
2

9

)⋃(
7

9
,
8

9

))

Ck := Ck−1 \
3k−1−1⋃
j=0

(
3j + 1

3k
,
3j + 2

3k

)

= [0, 1] \
k⋃

l=1

3l−1−1⋃
j=0

(
3j + 1

3l
,
3j + 2

3l

)

Thus {Ck}∞k=1 is a very large descending (i.e nested C ⊂ Ck−1) sequence of
closed sets, and Ck is a disjoint union of 2k closed intervals of length 1

3k
. Let

then C =
⋂∞

k=1 Ck, so C is closed, and hence also measurable.

Since m(Ck) =
(
2
3

)k
, m(C) ≤ m(Ck) ≤

(
2
3

)k ∀k. Taking the limit as k → ∞
we get m(C) = 0.

Suppose that C was countable, let {ck}∞k=1 be an enumeration of all it’s
elements. Then writing C1 = the disjoint union of 2 interavals, we must
have that c1 belongs to precisely one of them. Say c1 /∈ F1. Now F1 ⊂ C2
is made of 2 disjoint intervals, and one of them does not contain c2, say
c2 /∈ F2.

Continue this way until we get a sequence of {Fk}∞k=1, where Fk is a closed
interval, Fk+1 ⊂ Fk, and Fk ⊂ Ck, and ck /∈ Fk. By the nested set theorem,
let x ∈ ∩∞

k=1Fk. Then

x ∈ ∩∞
k=1Fk ⊂ ∩∞

k=1Ck = C

So x ∈ C but {ck}∞k=1 enumerates ALL points of C so ∃n such that x =
cn. Hence x /∈ Fn but this is a contradiction so we conclude that C is
uncountable.

Finally observe that C is closed and C ⊂ [0, 1], so C is compact by Heine-
Borel.

There are two variations of this theorem.
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1. If instead of removing the middle third, we removed the middle p%
where 0 < p < 100, then we also get a Cantor set which has the same
properties as C.

2. We could also remove a smaller proportion at each step, instead of a
fixed one. At each step we remove 2n−1 intervals of length an for some
0 < a ≤ 1

3 . Then the total length removed is
∑∞

n=1 2
n−1an = a

1−2a . So,

for this “fat” Cantor set m(Cfat) = 1− a
1−2a = 1−3a

1−2a . Which is indeed

0 when a = 1
3 (standard Cantor), and m(Cfat) > 0 for 0 < a < 1

3

Remark. |L| = |P(R)|: ≤ is trivial so ∀A ⊂ C, A ∈ L but |C| = R ⇒ |L| =
|P(R)|

Remark. |P(R) \ L| = |P(R)|: Let V be a Vitali set, V [0, 1], then ∀A ⊂
[2, 3], V ∪A /∈ L and so |P(R)| ≥ |P(R) \ L| ≥ |P([2, 3])| = |P(R)|

Cantor-Lebesgue Function

Let Uk := [0, 1]\Ck, which is 2k−1 disjoint open intervals, of various lengths,
and

U = [0, 1] \ C = [0, 1] \
∞⋂
k=1

Ck =

∞⋃
k=1

Uk

Thus U is open on [0, 1] and m(U) = m([0, 1]) = 1 since m(C) = 0.

Theorem 8.2. There is a continuous (weakly) increasing function ϕ : [0, 1] →
[0, 1] that is surjective with ϕ(0) = 0 and ϕ(1) = 1 such that ϕ is differentiable
in U and ϕ′(x) = 0 ∀x ∈ U

First define ϕ on Uk by setting it to be equal to the constants { 1
2k
, 2
2k
, . . . , 2

k−1
2k

}
on it’s 2k − 1 open intervals. Observe that if we increase k → k + 1, Uk+1

has more intervals but some of them are the same that we already had in
Uk, and on those, the value of ϕ in the 2 steps agrees!

Taking the union over k defines ϕ on U . To extend ϕ to all of [0, 1], we let
ϕ(0) = 0 and for all x ∈ C \ {0} let ϕ|x| := sup{ϕ(y) | y ∈ U ∩ [0, x)} (this
is finite since ≤ 1)

We have defined a function ϕ : [0, 1] → [0, 1) and it satisfies the specified
properties.
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Consider now ψ(x) := ϕ(x) + x for x ∈ [0, 1]. Some obvious properties:

� ψ is continuous

� ψ is strictly increasing

� ψ(0) = 0, ψ(1) = 2

� ψ([0, 1]) = [0, 2] and ψ is a bijection between these

� ψ−1 : [0, 2] → [0, 1] is continuous

Proposition. m(ψ(C)) = 1 and ∃E ⊂ C, E ∈ L such that ψ(E) /∈ L

Corollary. This set E is measurable but not Borel.

Proposition (Continuity of Measure). 1. If {Aj}∞j=1 are measurable sets
with Aj ⊂ Aj+1 ∀j, then

m

 ∞⋃
j=1

Aj

 = lim
j→∞

m(Aj)

2. If {Bj}∞j=1 are measurable sets with Bj+1 ⊂ Bj ∀j, and m(Bj) <
∞ ⇐⇒ m(B1) <∞ then

m

 ∞⋂
j=1

Bj

 = lim
j→∞

m(Bj)

Definition 8.1 (Almost Everywhere). We say some property “P” holds
almost everywhere on E, or for a.e x ∈ E, if ∃E0 ⊂ E with m⋆ (E0) = 0
such that P holds for all x ∈ E \E0. We also say “P holds for almost all x
in E”.

Ex: Almost every real number is irrational.

Proposition (Borel-Cantelli’s Lemma). Let {Ej}∞j=1 ⊂ L be such that∑∞
j=1m(Ej) < ∞. Then almost every x ∈ R belongs to at most finitely

many Ej’s.

16



Proof. For each n,

m

 ∞⋃
j=n

 ≤
∞∑
j=n

m(Ej) <∞

and
∞⋃

j=n+1

Ej ⊂
∞⋃
j=n

Ej

So by the continuity of measure

m

 ∞⋂
n=1

∞⋃
j=n

Ej

 = lim
n→∞

m

 ∞⋃
j=n

Ej

 ≤ lim
n→∞

∞∑
j=n

m(Ej) =︸︷︷︸
tails of a convergent series

0

Hence “almost every” x ∈ E satisfies x /∈ ∩∞
n=1 ∪∞

j=n Ej . i.e for each such x,
∃n such that x /∈ ∪∞

j=nEn so x belongs only to (at most) E1 . . . En−1

9 Measurable Functions

We shall now study functions f : E → [−∞,∞] := R∪ {±∞} where E ⊂ R
is a measurable set.

Sublevel sets of f are the sets of the form f−1([−∞, c)) = {x ∈ E | f(x) <
c}, for some c ∈ R

Definition 9.1. If we have f : E → [−∞,∞] with E measurable, then we
say that f is measurable if all sublevel sets f−1([−∞, c)) are in L for all
x ∈ R.

Proposition. f : E → [−∞,∞], then the following are equivalent:

1. f measurable

2. ∀c ∈ R, f−1([−∞, c]) = {x ∈ E | f(x) ≤ c} ∈ L

3. ∀c ∈ R, f−1((c,∞]) = {x ∈ E | f(x) > c} ∈ L

4. ∀c ∈ R, f−1([c,∞]) ∈ L

5. ∀U ⊂ R open, f−1(U) ∈ L

17



6. ∀A ⊂ R Borel set, f−1(A) ∈ L

Ex: If E measurable, f : E → R continuous, then f is measurable. Indeed,
∀U ⊂ R open, f−1(U) is open in E, i.e f−1(U) = V ∩E where V ⊂ R open.
Clearly V ∩ E ∈ L, so f is measurable.

Caution: f : E → R continuous and A ⊂ R measurable ≠⇒ f−1(A) ∈ L.
For example: E = [0, 1], f = ψ−1 then we proved earlier that ψ maps a
measurable subset onto a non-measurable subset.

Proposition. f : [a, b] → R monotone =⇒ f measurable

Proof. without loss of generality, we may assume f is monotone increasing
f(x) ≤ f(y) whenever x ≤ y. For any c ∈ R, look at {f < c} and assume it
is non-empty. We show that {f < c} is an interval ⊂ [a, b]. Now, intervals
I ∈ R are characterized by the property that if x ≤ y ∈ I then the whole
segment tx+ (1− t)y is in I, for 0 ≤ t ≤ 1. So let f(x) < c, f(y) < c, then
tx+ (1− t)y ≤ y so f(tx+ (1− t)y) ≤ f(y) < c too.

So {f < c} is an interval which means that f is measurable.

Proposition. given E ⊂ R measurable, f : E → [−∞,∞] measurable

1. If g : E → [−∞,∞] is another function and f = g a.e on E. Then g
is measurable

2. Suppose D ⊂ E, D measurable. Then f is measurable (as a function
on E) ⇐⇒ f |D measurable (as a function on D) and f |E\D is
measurable (as a function on E \D).

Proof. (1): Let A = {x ∈ E | f(x) ̸= g(x)}, which by assumption has
m(A) = 0. Then ∀c ∈ R,

{x ∈ E | g(x) > c} = {x ∈ A | g(x) > c} ∪ {x ∈ E \A | f(x) > c}
= {x ∈ A | g(x) > c} ∪ {x ∈ E | f(x) > c}︸ ︷︷ ︸

∈L

∩{E \A}︸ ︷︷ ︸
∈L

{x ∈ A | g(x) > c} is a subset of A hence it has measure 0 and is also
measurable so {g > c} ∈ L.
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(2):

{x ∈ E | f(x) > c} = {x ∈ D | f(x) > c} ∪ {x ∈ E \D | f(x) > c}
= ({x ∈ E | f(x) > c} ∩D) ∪ ({x ∈ E | f(x) > c} ∩ (E \D))

Sums and Products: If f, g : E → [−∞,∞] can we consider their sum f+g?
Well, if f(x) = ∞ and g(x) = −∞ then f(x) + g(x) is definitely undefined.
Let us then assume that f and g are finite for a.e point in E. Thus, ∃E0 ⊂ E
with m(E0) = 0, such that f and g are finite on E \ E0. We will now show
that f+g : E \E0 → R is measurable (on E \E0). Then if h : E → [−∞,∞]
is any function such that h |E\E0

= (f + g) |E\E0
then h is also measureable

by part (2) above. Observe that such an h always exists (e.g set h = f + g
on E \E0 and h = 0 on E0), and it is not unique at all. However, as we just
said, all such h are measurable. We thus can say f + g is measurable on E.

Proposition. f, g : E → [−∞,∞] measurable such that f, g are finite a.e
on E. Then ∀α, β ∈ R, αf + βg and fg are measurable on E.

However, composition of two measurable functions may fail to be measurable:

Ex: If E ⊂ R measurable let χE be its characteristic function

χE(x) =

{
1 if x ∈ E

0 if x /∈ E

Then χE is measurable on R

{χE < c} =


R c ≥ 1

Ec 0 < c < 1

∅ c ≤ 0

Take then ψ from before, ψ : [0, 1] → [0, 2] strictly increasing, with A ⊂
[0, 1], A ∈ L and ψ(A) /∈ L. Extend ψ to R as strictly increasing and
continuous, for example with

ψ̃(x) =


ψ(x) if 0 ≤ x ≤ 1

x if x < 0

2x if x > 1
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So ψ̃ : R → R is a strictly increasing continuous bijection which implies
ψ̃−1 : R → R is continuous =⇒ ψ̃−1 measurable; χA is also measurable, but
f = χA ◦ ψ̃−1 : R → R is NOT measurable, since if I =

(
1
2 , 2

)
, χ−1

A (I) = A

then f−1(I) = ψ̃
(
χ−1
A (I)

)
= ψ̃(A) = ψ(A) /∈ L.

To reconcile this, we introduce the following:

Proposition. If g : E → R is measurable and f : R → R continuous then
f ◦ g : E → R measurable.

Proof. ∀U ⊂ R open,

(f ◦ g)−1(U) = g−1(f−1(U)) ∈ L

Since f−1(U) is open and g is measurable.

Example: Take f : E → R measurable, and p ∈ R > 0. Then |f |p : E → R
is measurable (indeed y → |y|p is continuous on R)

Proposition. Let {fj}nj=1 be a set of measurable functions E → R, then
max1≤j≤n{fj} and minj{fj} are measurable.

Proof.

{x ∈ E | max
j

{fj}(x) > c} =

n⋃
j=1

{x ∈ E | fj(x) > c}

While min{fj} = −max{−fj}

Convergence of functions: {fn}∞n=1, f : E → [−∞,∞], A ⊂ E. We say
that fn → f as n→ ∞

1. Pointwise on A if ∀x ∈ A limn→∞ fn(x) = f(x)

2. Pointwise a.e on A if ∃B ⊂ R such that m(B) = 0 and fn → f
pointwise on A \B

3. Uniformly on A if fn, f are R-valued and ∀ϵ > 0 ∃n0 such that ∀x ∈ A,
|fn(x)− f(x)| ≤ ϵ, for all n ≥ n0.
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Clearly (c) =⇒ (b) =⇒ (a) but the reverse arrows are all false. For
example fn(x) = xn → 0 pointwise a.e on [0,1] but not pointwise on [0,1],
and fn(x) = sin(xn) → 0 converges pointwise on R but not uniformly.

Proposition. If E ∈ L and f, fn : E → [−∞,∞] with all fn being measurable
and fn → f pointwise on E, the f is measurable.

Definition 9.2 (Simple Function). If E measurable, then ψ : E → R is
called simple if it is measurable, and takes only a finite number of values.
Call these values {cj}nj=1, for some n ≥ 1. Then if we call Ej = ψ−1(cj) =
{x ∈ E | ψ(x) = cj} then we have Ej measurable ∀j = 1 . . . n and E =
∪n
j=1Ej disjoint. Also ψ = cj on Ej so

ψ =
n∑

j=1

χEcj

In other words, simple functions are the same thing as finite linear combinations
(with R coefficients) of characteristic functions of measurable sets.

Approximation Lemma: We have E measurable and f : E → R measurable.
Suppose f is bounded, i.e ∃C > 0 such that |f | ≤ C then ∀ϵ ∃ϕϵ, ψϵ simple
functions on E such that ϕϵ ≤ f ≤ ψϵ on E and 0 ≤ ψϵ − ϕϵ ≤ ϵ on E.

Proposition. E ⊂ R measurable, f : E → [−∞,∞]. Then f is measurable
⇐⇒ ∃{ψn}∞n=1, ψn : E → R simple functions, ψn → f pointwise on E, and
|ψn| ≤ |f | on E, for all n. If f ≥ 0, we may choose ψn such that ψn+1 ≤ ψn

on E ∀n.

Definition 9.3 (Null-Set). A set A ⊂ R with m⋆ (A) = 0 is called a null-set.

Theorem 9.1 (Egorov’s Theorem). For E ∈ L with m(E) < ∞, Let
{fn}∞n=1 be measurable functions. fn : E → [−∞,∞] which converge pointwise
a.e to f : E → [−∞,∞] which is finite a.e on E (i.e f is R-valued except for
a null-set in E). Then ∀ϵ > 0, ∃F ⊂ E closed set, such that m(E \ F ) ≤ ϵ
and fn → f uniformly on F .

To start, observe that we may assume there are E0, E
′
0 ⊂ E two null sets

such that fn → f pointwise on E \ E0 and f : E \ E′
0 → R. Thus, both of

these hold on E \ ( E0 ∪ E′
0

still a null set

), and if we prove Egorov on E \ (E0∪E′
0) then
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this gives Egorov on E. Thus, up to relabeling E ⇝ E \ (E0 ∪E′
0), we shall

assume form the start that

fn → f pointwise on E and f : E → R

We already know that f is measurable on E.

Lemma 9.2. Suppose we are in this setting. Then, ∀η > 0, ∀δ > 0, ∃A ⊂
E,A ∈ L, and ∃N ≥ 1 such that m(E \ A) ≤ δ and |fn − f | ≤ η on A for
all n ≥ N .

Theorem 9.3 (Lusin’s Theorem). Let E ∈ L, f : E → [−∞,∞] be
measurable and finite a.e, then ∀ϵ > 0, ∃F ⊂ E closed with m(E \ F ) ≤ ϵ
and ∃g : R → R continuous, such that f = g on F .

10 Integration

Definition 10.1 (Step Functions). Step functions are a special class of
simple functions. ϕ : [a, b] → R is a step function if there exist finitely many
disjoint intervals {Ej}nj=1, Ej ⊂ [a, b]∀j, ∪n

j=1Ej = [a, b], and ∃cj ∈ R, such
that ϕ =

∑n
j=1 cjχEj .

Observe that if ϕ is a step function then {Ej}nj=1 give us a partition P of
[a, b] and

L(ϕ,P) =
n∑

j=1

cjℓ(Ej) = U(ϕ,P)

Where L andU are the lower Darboux sums defined in Riemann integration.
So for any partition Q of [a,b]

sup
Q

L(ϕ,Q) ≥ L(ϕ,P) = U(ϕ,P) ≥ inf
Q

U(ϕ,Q) ≥ sup
Q

L(ϕ,Q)

Hence they are equal, and ϕ is Riemann integrable and∫ b

a
ϕ(x)dx =

n∑
j=1

cjℓ(Ej)
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One can prove that if f is Riemann integrable on [a, b], then

sup

{∫ b

a
ϕ(x)dx | ϕ step function and ϕ ≤ f on [a, b]

}
= inf

{∫ b

a
ψ(x)dx | ψ step function and ψ ≥ f on [a, b]

}

To define the Lebesgue Integral we will proceed in steps.

Step 1:

Suppose ϕ is a simple function, so E ∈ L, ϕ : E → R has the form ϕ =∑n
j=1 ajχEj where aj ∈ R is distinct and Ej ⊂ E, ∪n

j=1Ej = E is a disjoint
union.

Suppose m(E) <∞, then we define the Legesbue integral as

∫
E
ϕ =

∫
E
ϕ(x)dx =

n∑
j=1

ajm(Ej)

Proposition. E ∈ L with m(E) < ∞, ϕ, ψ : E → R are simple functions
then ∀α, β ∈ R, ∫

E
αϕ+ βψ = α

∫
E
ϕ+ β

∫
E
ψ (Linearity)

Also, if ϕ ≤ ψ on E, then ∫
E
ϕ ≤

∫
E
ψ (Monotonicity)

Step 2:

E ∈ L, m(E) < ∞, f : E → R bounded. We say that f is Lebesgue
integrable if L(f) = U(f) where

L(f) = sup

{∫ b

a
ϕ(x)dx | ϕ step function and ϕ ≤ f on [a, b]

}
U(f) = inf

{∫ b

a
ψ(x)dx | ψ step function and ψ ≥ f on [a, b]

}
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Theorem 10.1. a, b ∈ R, a < b, f : [a, b] → R a bounded function. Suppose
f is Riemann integrable, then f is Lebesgue integrable on [a, b] and the two
integrals are equal.

Theorem 10.2. E ∈ L with m(E) < ∞, f : E → R measurable and
bounded, then f is Lebesgue integrable over E.

Theorem 10.3. E ∈ L,m(E) < ∞, f, g : E → R bounded measurable
functions. ∀α, β ∈ R, ∫

E
(αf + βg) = α

∫
E
f + β

∫
E
g

Also, if f ≤ g on E then
∫
E f ≤

∫
E g

Corollary 10.3.1 (Chopping). E ∈ L, m(E) < ∞, f : E → R bounded
and measurable. If A,B ⊂ E, A,B ∈ L, A ∩B = ∅, then∫

A∪B
f =

∫
A
f +

∫
B
f

Proposition (Extremely Useful Inequality). E ∈ L, m(E) <∞, f : E → R
bounded and measurable, then ∣∣∣∣∫

E
f

∣∣∣∣ ≤ ∫
E
|f |

Proposition. E ∈ L, m(E) < ∞, fn : E → R bounded measurable. If
fn → f uniformly on E, then

lim
n→∞

∫
E
fn =

∫
E
f

Theorem 10.4 (Bounded Convergence Theorem). E ∈ L, m(E) < ∞,
fn : E → R bounded, fn → f pointwise on E. Suppose that ∃M > 0 such
that |fn| ≤M on E, ∀n. Then

lim
n→∞

∫
E
fn =

∫
E
f

Step 3:
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Definition 10.2 (Finite Support). E ∈ L, not necessarily with m(E) <∞.
f : E → [−∞,∞] measurable. We say that f has finite support if its support
Supp(f) = {x ∈ E : f(x) ̸= 0} ∈ L satisfies m(Supp(f)) <. In other words,
f is zero outside a measurable subset with finite measure. In this case, if
f : E → R bounded and measurable, m(E) may be infinite, and if f has
finite support, we define ∫

E
f :=

∫
Supp(f)

f

Now, for E ∈ L and f : E → [0,∞] measurable non-negative function,
define∫
E
f = sup

{∫
E
h | h : E → R bounded, measurable of finite support with 0 ≤ h ≤ f on E

}
Theorem 10.5 (Chebyshev’s Inequality). E ∈ L, f : E → [0,∞] measurable.
Then ∀λ > 0.

m{f ≥ λ} ≤ 1

λ

∫
E
f

Corollary 10.5.1. E ∈ L, f : E → [0,∞] measurable, then∫
E
f = 0 ⇐⇒ f = 0 a.e on E

Linearity and Monotonicity also apply to step 3 of the definition.

Proposition (Fatou’s Lemma). E ∈ L, fn : E → [0,∞] measurable,
suppose fn → f pointwise a.e on E. Then∫

E
f ≤ lim inf

n→∞

∫
E
fn

Theorem 10.6 (Monotone Convergence Theorem). E ∈ L, fn : E → [0.∞]
measurable with {fn} increasing (i.e fn ≤ fn+1 on E ∀n ≥ 1 ). Assume
fn → f pointwise a.e on E. Then∫

E
f = lim

n→∞

∫
E
fn

Definition 10.3. E ∈ L, f : E → [0,∞] measurable. We say that f is
integrable over E if

∫
E f <∞.
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Proposition. f integrable =⇒ f finite a.e on E.

Proposition (Beppolevi’s Lemma). E ∈ L, fn : E → [0,∞] measurable
with fn ≤ fn+1 ∀n. Suppose ∃C > 0 such that

∫
E fn ≤ C ∀n. Then

fn → f pointwise on E, f : E → [0,∞] measurable and finite a.e on E, and
limn→∞

∫
E fn =

∫
E f <∞.

Step 4:

Now for general functions. E ∈ L, f : E → [−∞,∞], measurable. Then
f+, f− : E → [0,∞] are measureable and{

f = f+ − f−

|f | = f+ + f−

on E.

Lemma 10.7. |f | integrable on E ⇐⇒ f+ and f− integrable on E

Definition 10.4. E ∈ L, f : E → [−∞,∞] measureable. We say that f is
integrable if |f | integrable. Then let∫

E
f =

∫
E
f+ −

∫
E
f− ∈ R

This clearly agrees with the earlier definition if f ≤ 0, since then f− = 0.

Proposition. f integrable on E =⇒ f finite a.e on E, and ∀E0 null set
in E, ∫

E
f =

∫
E\E0

f

Proposition. E ∈ L, f : E → [−∞,∞] measurable. Suppose g : E →
[0,∞] measurable such that g integrable on E and |f | ≤ g on E. Then f
also integrable, and

|
∫
E
f | ≤

∫
E
|f |

Now if f, g are integrable over E, f + g can only be defined at points where
f and g are finite. But we know that E0 = {f = ±∞}∪{g = ±∞} is a null
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set, so on E \ E0 we define f + g, we will show that f + g is integrable on
E \ E0, and then define

∫
E(f + g) :=

∫
E\E0

(f + g).

Linearity, monotonicity, and chopping also hold true for this definition of
the Lebesgue integral.

Theorem 10.8 (Dominated Convergence). E ∈ L, fn : E → [−∞,∞]
measurable. Suppose fn → f pointwise a.e on E and |fn| ≤ g on E ∀n for
some g integrable on E. Then f integrable and∫

E
f = lim

n→∞

∫
E
fn

11 Lebesgue Measure in Rn

We now briefly extend the theory of Lebesgue measure to Rn, n ≥ 1. To
start, using open sets in Rn, one defines the Borel σ-algebra B on Rn.

To define the Lebesuge outer measure, the role of intervals is played by
rectangles (or boxes). A box I in Rn is a product of intervals I = I1×. . .×In
where each Ij ⊂ R is an interval. Then I open ⇐⇒ Ij open ∀j, I bounded
⇐⇒ Ij bounded ∀j.

The analogue of the length ℓ(I) is now the Volume Vol(I) =
∏n

j=1 ℓ(Ij) ∈
[0,∞]. Clearly Vol(I) <∞ ⇐⇒ I bounded.

If A ⊂ Rn, let CA =
{
{Ij}∞j=1 | Ij bounded open boxes with A ⊂ ∪∞

j=1Ij

}
Again, we let

m⋆(A) := inf
{Ij}∈CA

∞∑
j=1

Vol(Ij)

All of the classic properties of the case when R = 1 also hold for Rn.

Product Sets:

Lemma 11.1. A ⊂ Ra, B ⊂ Rb any sets, A×B ⊂ Ra+b, then m⋆(A×B) ≤
m⋆(A)m⋆(B), with the convention that 0×∞ = 0
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Proposition. If A ⊂ Ra, A ∈ L, B ⊂ Rb, B ∈ L, then A × B ⊂ Ra+b is
measurable.

Definition 11.1 (Slices). E ⊂ Rn, (n ≥ 2), suppose E ∈ L. A slice of E is
a set of this form: write Rn = Ra × Rb, a+ b = n.

Pick any x ∈ Ra and let Ex = slice = {y ∈ Rb | (x, y) ∈ E}. There is a
problem: E ∈ L ≠⇒ Ex ∈ L
Theorem 11.2 (Fubini’s Theorem). Suppose f : Rn = Ra×Rb → [−∞,∞]
is integrable with respect to Lebesgue on Rn. Then for a.e y ∈ Rb, the slice
f(·, y) is integrable in Ra and the function y 7→

∫
Ra f(x, y)dx is integrable

in Rb, we also have ∫
Rn

f =

∫
Rb

(∫
Ra

f(x, y)dx

)
dy

The theorem is symmetric in x and y so we also have
∫
Rn f =

∫
Ra

(∫
Rb f(x, y)dy

)
dx

and for a.e x ∈ Ra, f(x, ·) is integrable in Rb and x 7→
∫
Rb f(x, y)dy is

integrable in R.

Corollary 11.2.1 (Tonelli’s Theorem). f : Rn = Ra × Rb → [0,∞] is
measurable nonegative function. Then for a.e y ∈ Rb, f(·, y) is measurable
on R and y 7→

∫
Ra f(x, y)dx is measurable on Rb, and∫

Rn

f =

∫
Rb

(∫
Ra

f(x, y)dx

)
dy

Usually, one applies Tonelli to |f |, where f is measurable on Rn, so that∫
Rn |f | =

∫
Rb

(∫
Ra |f |(x, y)dx

)
dy, so if the LHS is finite, so is the RHS, hence

f is integrable in Rn, so Fubini applies to f ,∫
Rn

f =

∫
Rb

(∫
Ra

f(x, y)dx

)
dy

Corollary 11.2.2 (Cavalieri’s Formula). E ⊂ Rn = Ra × Rb measurable,
then for a.e y ∈ Rb, Ey is measurable in Ra. Also y 7→ m(Ey) is a measurable
function and

m(E) =

∫
Rb

m(Ey)dy

Corollary 11.2.3. If A ⊂ Ra, A ∈ L, B ⊂ Rb, B ∈ L, then A×B ⊂ Ra+b

is measurable (we already knew that) and m(A×B) = m(A)m(B).
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