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1 Borel Sets

We will work for some time on R exclusively. Before beginning Measure
Theory: a quick recap of Topology.

Definition 1.1 (Open Set). A subset U C R is called open if either U = ()
or else
Ve € U,3r >0 such that (v —r,x+r) CU

Some examples of open sets: 0, R, (a,b), (a,00),(—00,a). There are many
more because any union of an open set is still open and any finite intersection
of open sets is open.

Definition 1.2 (Closed Set). F' C R is called closed if R\ F' := F* is open.

F is closed <= F contains all points x € R which have the property that
Vr>0,(x—r,x+7r)NF #0.

If F C R is any set, the closure of F, denoted by F, is the smallest closed
set that contains F.

Definition 1.3 (Compact). A subset G C R is compact if given any
collection {U;}ier of open sets Uy C R with G C U;eUs, there exists J C 1,
J finite, such that G C Uje U;
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Theorem 1.1 (Heine-Borel). G C R is compact <= G is closed and
bounded. To be bounded means G C (a,b) for some a,b € R.

Corollary 1.1.1 (Nested Set Theorem). Let {F,,}>°; be a countable collection
of non-empty, bounded, closed sets F,, C R with F,11 C F,Vn, then

M Fy 0

Proof. Suppose N2, F,, = () solet U, = Ef be open sets, such that U® ,U,, =
R. We also have that U, C U,41, since the F,, were nested. Now F} is
compact by Heine-Borel and Fy C U2 ,U,, = by compactness I can find a
finite subcover of Fy, say F C UN_,U,, = Uy = F§

On the other hand Fy C Fj by the nested property which implies Fy = ()
which is a contradiction. O

2 Measure Theory

We want to measure the size of a set. We will deal with a subset of R.

It turns out that one needs to select a class of subsets of R that one wants
to measure. This class of subsets will have certain properties which are as
follows.

Definition 2.1 (c-algebra). A collection A of subsets of R is called a
o-algebra if it satisfies

1.he A
2. If A€ A then A€ A
3. If {Ap}o2, C A then U2 A, € A

Observe the following:

e R € A always



o If {4}, € Athen UY_| A, € A (just define A,, =) for n > N)
o If {A4,}5°, C Athen N2 A4, € A (since (N5, Ap)¢ = US2, AS)

o If A, B € Athen A\ B € A too since A\ B= AN B¢

Examples:

1. A={0,R} “Minimal o-algebra”
2. A=P(R) = Collection of all subsets of R. “Maximum o-algebra”

In fact, if A is any o-algebra, then {), R} C A C P(R)

For better examples, let F' be any collection of subsets of R. I want to make
F into a o-algebra. Define m = {A | A is a o-algebra that satisfies F' C A}.
m # () since it contains P(R)

If A,B€m,Icandefine ANB={ACR|Aec Aand A € B} and I can do
the same for N;c1 A arbitrary intersection of o-algebra is still a o-algebra

Define F; = NacmA as a o-algebra and F C F and it is the minimal
o-algebra with these properties. If G is a o-algebra with F C G, then F' C G.
F'is the o-algebra generated by F. Concretely, F' consists of all subsets of
R that can be constructed by applying countable unions, intersections, and
complements to elements of F.

Definition 2.2 (Borel Sets). The o-algebra B of Borel Sets is the o-algebra F
generated by
F={UCR|U open}

Remark. B is also the o-algebra generated by the family of all closed subsets
of R

Singletons {z} C R are closed so if A C R is at most countable then A is
Borel. (e.g @Q C R) (e.g R\ Q)

Not all Subsets of R are Borel. One can actually show that the cardinality
of B is the same as the cardinality of R. On the other hand P(R) has strictly
larger cardinality.



3 Lebesgue Outer Measure

We are hoping to measure the size of subsets of R. Ideally we would like to
find or construct a function

m: P(R) = Rxo U {400} = [0, 0]

Which satisfies the following measure requirements:
1. If I = [a,b] or (a,b) or [a,b), or (a,b], a,b € R,a < b then m(I) =
b — a = measure of interval

2. m is translation invariant. i.eif E C Rand z € R, let E+2z = {y+x |
y € E} then m(E 4+ z) = m(E)

3. If {E;}7_; is a finite collection of pairwise disjoint £; C R then
n
m (Uj_ Ey) = > m(E;)
j=1

4. The same as (3) except for n = 0o

Theorem 3.1. There is no such m satisfying all 4 requirements

The proof for this will come later. The solution for this is that we do not
try to measure all subsets of R. So we have m : P(R) — [0, oo] but now we
will just be happy with m : A — [0, 00] where A is a o-algebra which has
enough elements. For example A > B.

We will follow H. Lebesgue as we proceed in two steps.

Step 1: construct Lebesgue outer measure m* : P(R) — [0, 00| satisfying
requirements 1,2, and 3.

Step 2: Use m* to define A and let m € m* | A

To create this Lebesgue outer measure on R we satisfy a weakened version of
requirement (3) that can be called (3w). For any countably infinite collection
{E;}52, of arbitrary subsets Ej C R

m* (U2, Ey) <Y m(E;)
j=1
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Theorem 3.2 (Lebesgue Outer Measure). There is a map m* : P(R) —
R>o U {400} that satisfies the measure requirements 1, 2, and Sw.

This m* is called the Lebesgue outer measure on R.
How do we define outer measure m*(A)?
Observe that any A C R can be covered by some countable infinite collection
{1, };’;’1 of bounded open intervals, which are allowed to be empty, but we
do not assume that I; be pairwise disjoint.
For example: I; = (—j,7), j =1,2,3...
Let
Ca = {{I;}721 | I; bounded open intervals such that A C U72;1;}

Ca # 0 by our example so for each {I;} € C4, I can consider
Zﬁ(lj) € R>o U {+00} (¢ denotes length)
j=1

Definition 3.1 (Outer Measure).

m*(A) = inf €(Ij) S RZO U {+OO}

This defines a map m* : P(R) — Rx>o U {+00}

Simple Properties:

e Monotonicity: If A C B then m*(A) < m*(B). Indeed by definition
Cp C C4 hence the infimum over Cg is > than the infimum over C4.

o Empty Set: m* (@) = 0. Given any 1 > ¢ > 0, let [; = (—¢/,€/), j =
1,2,.. . {l;} € Cpand 352 | U(I;) =232 ¢ = Z from the geometric

series going to zero so m* () < 12_66 Vo<e<1




e If A € R is finite or countable infinite then m* (A) = 0. Indeed
enumerate all elements of A by {a;}72,. (If A is finite say |A| = n let
aj = ay for all j >n). Forany 0 <e <1, let I; = (—ej +aj,a; +ej)
so A C U2 I and 272, U(1;) = ¢ hence as before, m* (4) = 0. For
example m* (Q) =0

We will now prove that the Lebesgue outer measure satisfies 1, 2, and 3w of
the measure requirements.

Proof of Property 1: i.e m* (I) = ¢(I) for any interval I C R

Assume that I = [a,b], a < b are finite numbers. Assume that I is a bounded
closed interval. Our goal is to show that m* (I) = b — a. One direction of
inequality is easy to prove, the other is quite tedious and will be left out.

For any € > 0let I} = (a —¢,b4+¢€) > I,let I[; =0,j > 2so {[;} € Cr =
m* (1) <3722, €(Ij) = b—a+ 2e. Let € — 0 and we obtain m* (I) < b — a.

Proof of Property 2: i.e VA C R,Vz € R, m* (A + z) = m* (4)

Ca and Ca4, are naturally in bijection via {I;} + {I; + z}. Furthermore
f(]j + 1’) = f([j)

m(A+z) = inf 0I; +x
Ato)=, it Sl +a)

= inf UI;)=m*(A
B DAL = (4)

Proof of Property 3w: i.e If {£;}7_; is a finite collection of pairwise disjoint

E; C R then m* (U?:1Ej> < Z?:l m* (Ej)

If m* (Ej) = +o0o for some j, then the property holds. We may assume that
m* (E;) < 400 Vj. Let € > 0. By the definition of infimum, for each j > 0,
there is

{Ij,k}zozl € CEJ» such that ZE(I]‘JC) <m* (Ej) + €277
k=1
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Thus {I;}32, is still countable and it covers U532, E)j meaning it belongs to
CU}?‘;1EJ’ so by definition
o0 [e.o] [e.9] o0 ) [e.9]
m | JE; | <D0D ) <D (m* (Ej) +e277) = m* (E)) +e

j=1 j=1 k=1 j=1 j=1

Then let € — 0. Clearly, by taking all E; = () except finitely many, we have
the same subadditivity 3w for finite collections.

Corollary 3.2.1. m* ([0,1]N(R\ Q)) =1 =¢([0,1])

Proof.

<0+1
O
Corollary 3.2.2. R\ Q is uncountable
Proof. 1f not, then
m*(R\Q)=0>m*([0,1]Nn(R\Q)) =1 O

4 The o-Algebra Of Lebesgue Measurable Sets

m* does not satisfy the third measurability requirement without the weak
3w condition. We can construct some examples to prove this. A, B C
R, AN B = 0, such that m* (AU B) < m* (A) + m* (B) later in the class.

The idea to avoid this problem is to look at “reasonable” subsets of R for
which this paradox disappears.

Definition 4.1 (Carathéodory). E C R is called (Lebesque) measurable if
VACR
m*(A)=m*(ANE)+m*(ANE°)



Remark. This is equivalent to Lebesgue’s definition: E is measurable if and

only if
U C R such that EC U and m* (U \ E) < ¢

But we will discuss this later.

Suppose that A is measurable and B C R is any set such that AN B = ()
then
m*(AUB)=m* | (AUB)NA ]| +m* | (AUB)N A°
=A =B

Going back to our counter example for m* and measurability requirement
3, A or B would have to be unmeasurable.

Here’s another observation: For E, A C R arbitrary sets we have
A=(ANE)U(ANE°)

So by 3w m* (A) < m*(ANE)+m* (AN E°), so E is measurable <=
VACR

|m* (A) > m* (AN E) +m* (AN E)
This holds trivially for m* (A) = oo

Example 1: () is measurable. VA C R

m* (A) = m* (AFTD) +m* (ANR)

Example 2: R is measurable. VA C R
m*(A) =m*(ANR) +m* (AN0)
Proposition. E C R with m* (E) =0, then E is measurable.

Corollary. FEvery countable set is measurable. Q measurable — R\ Q are
measurable

Proof. Let A C R be any set
ANECE=m"(ANE)<m*(E)=0
ANE‘CA=m"(ANE°) <m*(A)

Som*(A)Zm*(AﬁEC)—i—W



Our goal is to show that Lebesgue measurable sets £ = {E C R | E is measurable}
is a o-algebra on R. We just need to show that if {F;}52, with E; € L, Vj,
then U2, E; € £

Proposition. If {E;}7 | C L then U]_E; € L

Proof. We use mathematical induction. n = 1 is trivial so we set the base
case as n = 2. Iy, Fs are measurable, Let A C R be any set

m* (A) =m* (E1 N A)+m* (AN EY)
=m* (AN E1) +m* ((ANEY) N E2) +m* ((AN EY) N ES)
(AN E) +m* (AN EY) N E) +m* (AN (EY N ES))
=m*(ANE1) +m*((ANEY) N E) + m* (AN (E1 U E»)°)
m* (A N (El U Ez)) (A N (El U EQ)C) (3W)
So Ei1UEy e L.
Induction step n > 2
n n—1
UE]-: UEj U FE, € L by the n = 2 case O
j=1 j=1

To prove that this also applies to countable sets, we use

Proposition (Analog of measurability requirement 3 for m* | £). Suppose
A C R is any set and {Ej}?zl is a finite disjoint collection of sets Ej € L,
then

m* [ A E; | =Y m* (AN E))
Jj=1 Jj=1

In particular take A =R to get m* (U?Zl Ej> = > m*(Ej)
Proposition. If {E£;}32, is a countable family with E; € L V], then U2, Ej €

L. In particular, L is a o-algebra.

We Wf)uld like to have the Borel sets be measurable, i.e B C £. Recall that
B =F, where F = {U C R | U is open } and ~ denotes the o-algebra.



This results follows from the measurability of intervals combined with the
measurability of the union of measurable sets.

Proposition. If I C R is any interval, then I is measurable.

Theorem 4.1. £ = Lebesgue Measurable subsets of R form a o-algebra that
contains the Borel o-algebra B

Proof. We already know that L is a oc-algebra. If we can show that £
contains all open sets U C R, then £ (being a o-algebra) must contain B
which is the o-algebra generated by open sets. Now if U C R is any (non
empty) open set then by definition Vo € U,3I, > = where I, is an open
interval and I, C U.

We want to choose I, to be the “maximal” such. So by assigning
ag =1inf{z € R| (z,2) C U} satisfies a; < x

and
by :==sup{y € R | (z,y) C U} satisfies z < b,

so I, = (ay,b;) is an open interval that contains x and by construction
I, € U. 1t is the largest such, in the sense that if a; > —oo then a, ¢ U
and symmetrically if b, < oo then b, ¢ U.

For any y € I, we have y < by, so there is z > y such that (z,2) CU soy €
U. Indeed, if a, € U then since U open, Jr > 0 such that (a, —r,a,+7r) C U
contradicting the definition of a,.

So U = Uzepl,. It is a huge union, however if z, 2’ € U,z # 2/, then either
I.N I, =0, or if not then necessarily I, = I/, since I, U I,/ is then another
open interval that contains xz & 2/ and is a subset of U, so by maximality
it must equal I, & I,. So, throwing away all repeated I,, we can write
U = Ujerl, for some I where the intervals I,, are pairwise disjoint. By
density of Q@ C R, each such interval contains a different rational number
ri € I,. Since Q is countable, I is at worst countable.

So every U open is an at most countable disjoint union of open intervals.

Since such intervals belong ot £, and L is a g-algebra, it follows that every
U open is in L as desired. O
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Proposition (The o-algebra L is also translation invariant). If E C L and
rER then E4+x €L

Proof. Given any A C R,

m* (A) =m* (A —x)
=m*"((A—2)NE)+m*((A—2x)NE°
=m*(ANE+z)+m*(AN(E+ 2)°) (m* translation invariant)

O]

Remark. If A € £ with m* (A) < oo, and B C R is any set with A C B,
then
m* (B\ A) =m*(B) —m* (A)

5 OQOuter and Inner Approximation of Lebesgue Measurable
Sets

Definition 5.1 (Gebiet-Durchshnitt). A subset A C R is called a Gs if
A =52, A; where A; are all open (possibly empty).

Definition 5.2 (Fermé-Somme). A subset A C R is called a F, if A =
U, A; where A; are all closed (possibly empty).

Clearly, A is G5 <= A¢is Fys. Also clearly, all G5 and F, sets are Borel.
Of course not all G5 are open, e.g [0,1] = N2, (—%, 1+ %) and not all F,
are closed. e.g. (0,1) = U, [},1-1]

Q is clearly Fy, so R\ Q is G5. With this, we can give several equivalent
formulations of measurability.

Theorem 5.1. Let E C R be any set, then the following are equivalent:

1. Fel

2. ¥Ye>0,3U D E, U open, m* (U\ E) <€
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3. 3G C R a Gs set, G D E, withm* (G\ E) =0
4. Ye>0,3F C E, F closed, m*(E\ F) < ¢
5. 3F CR a F, set, F C E withm*(E\ F)=0

Proposition. For an E € £ with m* (E) < co. Then Ve > 0, H{I;}7_; a
finite disjoint family of open intervals so that if we let U = Uj_,1; (open)
then m* (EAU) < e.

6 Lebesgue Measure

We can now take m* and restrict it to £. m* |..

Definition 6.1 (Lebesgue Measure). This Lebesgue Measure is a function

m=m"|g: L = R>o U {400}

This means that for E € £ we define m(E) = m* (F). Clearly, m satisfies
the measurability requirements 1, 2, & 3 as we have proved earlier. It also
satisfies requirement 4 which was requirement 3 for countably infinite sets.

Proposition. If{Ej};’il is a countably infinite collection of pairwise disjoint
sets Ej € L (possibly empty), then U2, E; € L and

[e.9] [e.9]

m | | JE | =) m(E))
j=1 j=1
Proof. We proved earlier that U2, E; € £ and that
(o.9] o0
m | | JE | < m(E))
j=1 j=1
For the opposite inequality, for each n we proved earlier that
n n
m | |JE | =) m(E)
j=1 j=1
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But U?_, E; C U7, Ej, hence

o0 n n
m UEj >m UEj :Zm(Ej) Vn
j=1 j=1 j=1
Take the limit as n — oo to get
o0 o
m | JE; | =Y mE)
j=1 J=1

As desired. This argument shows that measurability requirement 3 and 3w
together imply 4. O

7 Non-Measurable Sets

We saw earlier that if £ C R satisfies m* (F) = 0 then F € L. In particular,
VE C E, m*(F) <m*(E) =0, so F € L too. This however totally fails
when m* (E) > 0.

Theorem 7.1 (Vitali). For any E C R with m* (E) > 0, there is an F C E
which is NOT measurable. The construction uses the axiom of choice (and
it 1s really needed).

The proof of this theorem and construction of a Vitali set are currently
omitted due to length.

8 Cantor Set

We showed earlier that if A C R is countable then A € £ and m(A4) = 0.
How about the converse; if A € £ has m(A) =0, is A countable? No!

Theorem 8.1 (Cantor). There is a closed, uncountable set C with m(C) =0

13



Start with an interval I = [0,1] and remove the middle %, namely (3, 2).
1 2 1 2
Ct=1I\|(5,5]=10,2 =1
=0 () = | Ul

e ((53)U(5)

k=11 . .
' 3j+1 3j+2
Cr = Cr—1\ U <3k’3k>
J=0
S 341 3542
~o\UJ U (%5252
=1 j=0

Thus {C;}72, is a very large descending (i.e nested C C Cp_1) sequence of
closed sets, and Cy, is a disjoint union of 2¥ closed intervals of length 3% Let
then C = (;2; Ck, so C is closed, and hence also measurable.

Since m(C) = %)k, m(C) < m(Cy) < (%)k Vk. Taking the limit as k& — oo
we get m(C) = 0.

Suppose that C was countable, let {c,}32; be an enumeration of all it’s
elements. Then writing C; = the disjoint union of 2 interavals, we must
have that ¢; belongs to precisely one of them. Say ¢; ¢ Fi. Now F} C Co
is made of 2 disjoint intervals, and one of them does not contain co, say
Co ¢ FQ.

Continue this way until we get a sequence of {F},}72,, where F}, is a closed
interval, F11 C F, and Fy, C Ci, and ¢ ¢ Fi. By the nested set theorem,
let © € NF2, F). Then

x € ﬂzolek C ﬂiozlck =C

So x € C but {c,};2, enumerates ALL points of C so In such that x =
¢n. Hence z ¢ F,, but this is a contradiction so we conclude that C is
uncountable.

Finally observe that C is closed and C C [0,1], so C is compact by Heine-
Borel.

There are two variations of this theorem.
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1. If instead of removing the middle third, we removed the middle p%
where 0 < p < 100, then we also get a Cantor set which has the same
properties as C.

2. We could also remove a smaller proportion at each step, instead of a
fixed one. At each step we remove 2"~ ! intervals of length a™ for some

0<a< 1 . Then the total length removed is >°°° ; 2"~ 1a" = T=9a- S0,

for this “fat” Cantor set m(Cra) = 1 — 1%, = 1 3“ . Which is mdeed

0 when a = } (standard Cantor), and m(Cta) > 0 for 0<a<3

Remark. |£]| = |P(R)|: < is trivial soVACC, Ae L but |C| =R = |L]| =
[P(R)]

Remark. |P(R)\ £| = |P(R)|: Let V be a Vitali set, V]0,1], then YA C
2,3],VUAE L and so [P(R)| = [P(R)\ £| > [P([2,3]) = [P(R)|

Cantor-Lebesgue Function

Let Uy := [0, 1]\ Cg, which is 2¥ —1 disjoint open intervals, of various lengths,
and

U=1[0,1\C=]0,1] ﬂck_UUk

Thus U is open on [0,1] and m(U) = m([O, 1]) = 1 since m(C) = 0.

Theorem 8.2. There is a continuous (weakly) increasing function ¢ : [0, 1] —
[0, 1] that is surjective with ¢(0) = 0 and ¢(1) = 1 such that ¢ is differentiable
inU and ¢'(x) =0 Ve € U

First define ¢ on Uy, by setting it to be equal to the constants {2%, 2%, R Qk 1}

on it’s 2¥ — 1 open intervals. Observe that if we increase k — k + 1, Uk+1
has more intervals but some of them are the same that we already had in
Uy, and on those, the value of ¢ in the 2 steps agrees!

Taking the union over k defines ¢ on U. To extend ¢ to all of [0, 1], we let
#(0) = 0 and for all z € C\ {0} let ¢|x| == sup{op(y) | y € UN[0,2)} (this

is finite since < 1)

We have defined a function ¢ : [0,1] — [0,1) and it satisfies the specified
properties.
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Consider now ¢ (z) == ¢(x) + = for z € [0, 1]. Some obvious properties:

e 1) is continuous

e 1) is strictly increasing

o U(0) =0, ¥(1) =2

e 9([0,1]) = [0,2] and 1) is a bijection between these

e yp~1:1[0,2] — [0,1] is continuous
Proposition. m()(C)) =1 and 3E C C, E € L such that Y(E) ¢ L
Corollary. This set E is measurable but not Borel.

Proposition (Continuity of Measure). 1. If{A4;}52, are measurable sets
with Aj C Aj+1 Vi, then

7=1

j—00

2. If {B;}32, are measurable sets with Bjy1 C Bj Vj, and m(B;) <
00 <= m(Bj) < oo then

oo
m ﬂBj = lim m(B;)
j=1

j—00

Definition 8.1 (Almost Everywhere). We say some property “P” holds
almost everywhere on E, or for a.e x € E, if 3By C E with m* (Ey) = 0
such that P holds for all x € E'\ Ey. We also say “P holds for almost all x
m B,

Ex: Almost every real number is irrational.

Proposition (Borel-Cantelli’s Lemma). Let {E;}72, C L be such that
> 21 m(Ej) < oo. Then almost every x € R belongs to at most finitely
many E;’s.
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Proof. For each n,

[e.e] oo
m U < Zm(EJ) < 00
j=n j=n

and
[S) oo
U Ej C U Ej
Jj=n+1 j=n

So by the continuity of measure

oo 00 00 00
m|(VYUE | =limm|JE | < lim Y m(E) = 0
n=1j=n J=n Jj=n tails of a convergent series

Hence “almost every” = € E satisfies ¢ Np2; U2, E;. i.e for each such z,
dn such that z ¢ U372, En so  belongs only to (at most) Ey ... Ep_q O

9 Measurable Functions

We shall now study functions f : E — [—00,00] ;= RU{%o00} where E C R
is a measurable set.

Sublevel sets of f are the sets of the form f~!([—o0,¢)) = {z € E | f(z) <
c}, for some ¢ € R

Definition 9.1. If we have f : E — [—00, 00| with E measurable, then we
say that f is measurable if all sublevel sets f~'([—o0,c)) are in L for all
z € R.

Proposition. f: E — [—00,00], then the following are equivalent:

1. f measurable

2. VeeR, f (-0, d)={zeE|flz)<clel
3. VeeR, f"H(c,00)) ={z€E| f(x)>cleLl
4. Ve eR, f([c,00]) € L

5. YU CR open, f~Y(U) e L

17



6. VA C R Borel set, f~1(A) € L

Ex: If F measurable, f : E — R continuous, then f is measurable. Indeed,
VYU C R open, f~1(U) is open in E, i.e f~}(U) = VN E where V C R open.
Clearly VN E € L, so f is measurable.

Caution: f : E — R continuous and A C R measurable =% f~1(4) € L.
For example: E = [0,1], f = ¢! then we proved earlier that ¢ maps a
measurable subset onto a non-measurable subset.

Proposition. f: [a,b] — R monotone = f measurable

Proof. without loss of generality, we may assume f is monotone increasing
f(z) < f(y) whenever z < y. For any ¢ € R, look at {f < ¢} and assume it
is non-empty. We show that {f < ¢} is an interval C [a,b]. Now, intervals
I € R are characterized by the property that if x < y € I then the whole
segment tx + (1 —t)y isin I, for 0 <t < 1. So let f(z) < ¢, f(y) < ¢, then
tr+ (1 —-t)y <wyso f(tr+ (1 —1t)y) < f(y) < c too.

So {f < ¢} is an interval which means that f is measurable. O

Proposition. given E C R measurable, f : E — [—00, 00] measurable

1. If g: E — [—00,00] is another function and f = g a.e on E. Then g
is measurable

2. Suppose D C E, D measurable. Then f is measurable (as a function
on E) <= f |p measurable (as a function on D) and f |p\p is
measurable (as a function on E\ D).

Proof. (1): Let A = {x € E | f(z) # g(x)}, which by assumption has
m(A) = 0. Then Vc € R,
{reFE|glx)>ct={zcA|glx)>ctU{z e E\A]| f(x) >c}
={zcA|glz)>ctu{z e E| f(x)>c}n{E\ A}
eL eL

{r € A | g(x) > ¢} is a subset of A hence it has measure 0 and is also
measurable so {g > ¢} € L.
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(2):

{zeE|f(x)>c={xeD|f(z)>ctuU{ze E\D]| f(x)>c}
=({zeElf(x)>ctnD)U({z e E| f(z)>c}N(E\D))

O

Sums and Products: If f,g: F — [—00, 0] can we consider their sum f+ g7
Well, if f(z) = oo and g(z) = —oo then f(x) 4 g(z) is definitely undefined.
Let us then assume that f and g are finite for a.e point in E. Thus, 3Ey C F
with m(Ep) = 0, such that f and g are finite on E'\ Ey. We will now show
that f+g¢: E\ Eg — R is measurable (on E'\ Ey). Then if h : E — [—00, o0]
is any function such that h | E\Ey= (f+9)] E\E, then h is also measureable
by part (2) above. Observe that such an h always exists (e.g set h = f +g¢
on E'\ Ey and h = 0 on Ey), and it is not unique at all. However, as we just
said, all such h are measurable. We thus can say f + ¢ is measurable on F.

Proposition. f,g: E — [—o00,00] measurable such that f,g are finite a.e
on E. ThenVa, 5 € R, af + Bg and fg are measurable on E.

However, composition of two measurable functions may fail to be measurable:

Ex: If F C R measurable let xg be its characteristic function

(2) 1 ifzekF
xr) =
XE 0 itz¢FE

Then yxg is measurable on R

R ¢>1
{xe<c}=<E° 0O<ec<l1
0 <0

Take then 1 from before, 1 : [0,1] — [0,2] strictly increasing, with A C
[0,1],A € £ and ¥(A) ¢ L. Extend v to R as strictly increasing and

continuous, for example with

Plx) if0<z<l1
() =< x ifx <0
2x ifx>1
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So 1/1 R — R is a strictly increasing continuous bijection which implies
¢! : R — Ris continuous = ¢~ measurable; x 4 is also measurable but
f=xa0t':R—Ris NOT measurable, smcelfI—( 2), X1 (I):A

then (1) = (x4 (1)) = $(A) = ¥(4) ¢ L.

To reconcile this, we introduce the following:

Proposition. If g : E — R is measurable and f : R — R continuous then
fog: E — R measurable.

Proof. YU C R open,

(fog) M U)=g ' (f 1 (U) eL

Since f~1(U) is open and g is measurable. O]

Example: Take f : E'— R measurable, and p € R > 0. Then |f|? : E - R
is measurable (indeed y — |y|? is continuous on R)

Proposition. Let {f; =1 be a set of measurable functions E — R, then
maxi<j<n{fj} and min;{f;} are measurable.

Proof.
{w € B | max{fj}(x) > c} = Ulz e B fi(2) > ¢}
j=1
While min{f;} = — max{—f;} O

Convergence of functions: {f,}>°,, f : E — [-o00,00|,A C E. We say

that f,, > fasn — o

n=1»

1. Pointwise on A if Vo € Alim,,_,o fn(z) = f(z)

2. Pointwise a.e on A if 3B C R such that m(B) = 0 and f, — f
pointwise on A\ B

3. Uniformly on A if f,,, f are R-valued and Ve > 0 Ing such that Vo € A,
|fn(z) — f(x)] <€, for all n > nyg.
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Clearly (¢) = (b) = (a) but the reverse arrows are all false. For
example f,(x) = 2" — 0 pointwise a.e on [0,1] but not pointwise on [0,1],
and f,(x) = sin() — 0 converges pointwise on R but not uniformly.

Proposition. IfE € L and f, f, : E — [—00, 00] with all f,, being measurable
and f, — f pointwise on E, the f is measurable.

Definition 9.2 (Simple Function). If E measurable, then 1 : E — R is
called simple if it is measurable, and takes only a finite number of values.
Call these values {c;}}_y, for some n > 1. Then if we call Ej = P (ej) =
{r € E | ¢¥(z) = ¢j} then we have E; measurable Vj = 1...n and E =
Ui B disjoint. Also 1 = ¢;j on Ej so

n
=Y xec
j=1

In other words, simple functions are the same thing as finite linear combinations
(with R coefficients) of characteristic functions of measurable sets.

Approximation Lemma: We have F measurable and f : F — R measurable.
Suppose f is bounded, i.e 3C' > 0 such that |f| < C then Ve J¢, 1. simple
functions on F such that ¢ < f <. on E and 0 < 9 — ¢ < e on E.

Proposition. E C R measurable, f : E — [—00,00]|. Then f is measurable
— Hn}2y, ¥n : E — R simple functions, ¥n, — f pointwise on E, and
Y| < |f| on E, for alln. If f > 0, we may choose ¥y, such that V41 < ¥y,
on EVn.

Definition 9.3 (Null-Set). A set A C R with m* (A) = 0 is called a null-set.

Theorem 9.1 (Egorov’s Theorem). For E € L with m(E) < oo, Let
{fn}2, be measurable functions. f, : E — [—o00, 00] which converge pointwise
a.e to f: E — [—00,00| which is finite a.e on E (i.e f is R-valued except for
a null-set in E). Then Ye > 0, 3F C E closed set, such that m(E \ F') < e
and fn, — f uniformly on F.

To start, observe that we may assume there are Ey, E| C E two null sets
such that f, — f pointwise on E \ Ey and f : E'\ E{ — R. Thus, both of
these hold on E'\ ( Ep U E) ), and if we prove Egorov on E'\ (EpU E|)) then

still a null set
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this gives Egorov on E. Thus, up to relabeling E ~~ E\ (Ep U E{)), we shall
assume form the start that

‘fn—>fpointwise 0nEandf:E—>R‘

We already know that f is measurable on E.

Lemma 9.2. Suppose we are in this setting. Then, Vn > 0, ¥§ > 0, A C
E ;A€ L, and 3N > 1 such that m(E \ A) <6 and |fn, — f| < n on A for
alln > N.

Theorem 9.3 (Lusin’s Theorem). Let E € L, f : E — [—00,00] be
measurable and finite a.e, then Ve > 0, 3F C E closed with m(E \ F) < €
and dg : R — R continuous, such that f =g on F.

10 Integration

Definition 10.1 (Step Functions). Step functions are a special class of
simple functions. ¢ : [a,b] — R is a step function if there exist finitely many
disjoint intervals {Ej}?:p E; C [a,b]Vy, Ui B = la,b], and 3c; € R, such
that ¢ =371 ciXE;-

Observe that if ¢ is a step function then {E;}7_; give us a partition P of
[a, b] and

L(¢,P) =Y c;jl(E;) =U(¢,P)
j=1

Where L and U are the lower Darboux sums defined in Riemann integration.
So for any partition Q of [a,b]

Sgp L(¢,Q) > L(¢,P) =U(¢,P) > irQIfU(qﬁ, Q) > sgp L(¢, Q)

Hence they are equal, and ¢ is Riemann integrable and

b n
/ $(w)de = c;l(E;)
a j=1
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One can prove that if f is Riemann integrable on [a, b], then
b
sup {/ ¢(z)dz | ¢ step function and ¢ < f on |[a, b]}

b
= inf {/ (x)dx | ¥ step function and ¢ > f on [a, b]}

To define the Lebesgue Integral we will proceed in steps.

Step 1:

Suppose ¢ is a simple function, so E € L, ¢ : £ — R has the form ¢ =
Z?zl ajXE; where a;j € R is distinct and Ej C F, Uj_; E; = E is a disjoint

union.

Suppose m(E) < oo, then we define the Legesbue integral as

/E<Z> = /Eaﬁ(w)dﬂﬂ = jz:ajm(Ej)

Proposition. E € L with m(E) < oo, ¢,9 : E — R are simple functions
then Vo, § € R,

/anﬁ + B =« /E o+ 5 /E () (Linearity)
Also, if ¢ <1 on E, then
/ ¢ < / W) (Monotonicity)
E E
Step 2:

E € L, m(F) < oo, f: E — R bounded. We say that f is Lebesgue
integrable if L(f) = U(f) where

b
L(f) =sup {/ ¢(x)dx | ¢ step function and ¢ < f on |[a, b]}

b
U(f) = inf {/ Y(x)dx | ¢ step function and ¥ > f on |a, b]}
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Theorem 10.1. a,b € R, a < b, f: [a,b] = R a bounded function. Suppose
f is Riemann integrable, then f is Lebesque integrable on [a,b] and the two
integrals are equal.

Theorem 10.2. E € L with m(F) < oo, f : E — R measurable and
bounded, then f is Lebesgue integrable over E.

Theorem 10.3. £ € L,m(F) < oo, f,g9 : E — R bounded measurable
functions. Va, 5 € R,

[ar+s0=a | 1+5 [

Also, if f < g on FE thenfEfngg

Corollary 10.3.1 (Chopping). F € £, m(FE) < oo, f : E — R bounded
and measurable. If A,BC E, A,Be L, ANB =10, then

Juwt =15

Proposition (Extremely Useful Inequality). F € £, m(F) < oo, f: E —- R

bounded and measurable, then
L)< [
E E

Proposition. £ € £, m(E) < oo, fn : E — R bounded measurable. If
fn — [ uniformly on E, then

lim fn = / f
n—oo
Theorem 10.4 (Bounded Convergence Theorem). E € £, m(E) < oo,

fn : E — R bounded, f, — f pointwise on E. Suppose that AM > 0 such
that |fn| < M on E, ¥n. Then

dm o= r

Step 3:
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Definition 10.2 (Finite Support). E € L, not necessarily with m(E) < oco.
f: E — [—00,00] measurable. We say that f has finite support if its support
Supp(f) ={z € E: f(z) # 0} € L satisfies m(Supp(f)) <. In other words,

f is zero outside a measurable subset with finite measure. In this case, if
[+ E — R bounded and measurable, m(E) may be infinite, and if f has

ﬁ’ﬂ/Lt€ Support t, we deﬁne
/ : /u
E Supp(f)

Now, for E € £ and f : E — [0,00] measurable non-negative function,
define

/ f =sup {/ h | h: E — R bounded, measurable of finite support with 0 < h < f on E}
E E

Theorem 10.5 (Chebyshev’s Inequality). E € L, f : E — [0, o] measurable.
Then VA > 0.

1
m{fzx\}g/\/Ef

Corollary 10.5.1. E€ L, f: E — [0,00] measurable, then

/f:0<:>f:0a.eonE
E

Linearity and Monotonicity also apply to step 3 of the definition.

Proposition (Fatou’s Lemma). £ € L, f, : E — [0,00] measurable,
suppose f, — [ pointwise a.e on E. Then

f < hmlnf/ fn

n—0o0

Theorem 10.6 (Monotone Convergence Theorem). E € L, f, : E — [0.00]
measurable with {f,} increasing (i.e fn, < fnt1 on EVn > 1 ). Assume
fn — f pointwise a.e on E. Then

f, 7= [

Definition 10.3. E € L, f : E — [0,00] measurable. We say that f is
integrable over E if [ f < oc.
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Proposition. f integrable = f finite a.e on E.

Proposition (Beppolevi’s Lemma). E € L, f, : E — [0,00] measurable
with fn, < foy1 Yn. Suppose 3C° > 0 such that fE fn < C Vn. Then
fn — f pointwise on E, f: E — [0, 00] measurable and finite a.e on E, and

hmn—>oofEfn = fEf < 0.

Step 4:

Now for general functions. E € L, f : E — [—00, 00|, measurable. Then
fT,f~ : E — [0,00] are measureable and

fo=fr=f
Ifl =fr+f
on E.
Lemma 10.7. |f| integrable on E <= f* and f~ integrable on E

Definition 10.4. E € L, f : E — [—00, 0] measureable. We say that f is
integrable if | f| integrable. Then let

fo-fr-f e

This clearly agrees with the earlier definition if f < 0, since then f~ = 0.

Proposition. f integrable on E =—> f finite a.e on E, and VEy null set

in E,
IR

Proposition. £ € L, f : E — [—o00,00] measurable. Suppose g : E —
[0, 00] measurable such that g integrable on E and |f| < g on E. Then f

also integrable, and
[ 1= [1n
E E

Now if f, g are integrable over E, f 4 g can only be defined at points where
f and g are finite. But we know that Ey = {f = o0} U{g = £oo} is a null
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set, so on E \ Ey we define f + g, we will show that f + g is integrable on
E\ Ey, and then define [,(f+g) == fE\Eo(f +9).

Linearity, monotonicity, and chopping also hold true for this definition of
the Lebesgue integral.

Theorem 10.8 (Dominated Convergence). E € L, f, : E — [—00, 9]
measurable. Suppose fp, — f pointwise a.e on E and |f,| < g on E ¥n for
some g integrable on E. Then f integrable and

/f: lim In
E n—oo E

11 Lebesgue Measure in R"

We now briefly extend the theory of Lebesgue measure to R", n > 1. To
start, using open sets in R", one defines the Borel o-algebra B on R".

To define the Lebesuge outer measure, the role of intervals is played by
rectangles (or boxes). A box I in R" is a product of intervals I = Iy x...x I,
where each I; C R is an interval. Then I open <= I; open Vj, I bounded
<= I; bounded Vj.

The analogue of the length ¢(I) is now the Volume Vol(I) = [[}_, £(I;) €
[0, 0]. Clearly Vol(I) < oo <= I bounded.

It A C R”, let Cq = {{Ij};gl | I; bounded open boxes with A C u;;lfj}

Again, we let
oo

m*(A) == inf Vol(I;
)= nf, 3 Vllr)
j_
All of the classic properties of the case when R = 1 also hold for R".
Product Sets:

Lemma 11.1. A C R?, B C R? any sets, Ax B C R**?, then m*(Ax B) <
m*(A)m*(B), with the convention that 0 x co =0
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Proposition. [f A CR*, Ac £, BCR?, Be L, then Ax B C R¢? s
measurable.

Definition 11.1 (Slices). £ C R", (n > 2), suppose E € L. A slice of E is
a set of this form: write R = R* x R?, a 4+ b = n.

Pick any x € R® and let E, = slice = {y € R® | (z,y) € E}. There is a
problem: E € L =5 E, €L

Theorem 11.2 (Fubini’s Theorem). Suppose f : R® = R? x R® — [~o0, o0]
is integrable with respect to Lebesque on R™. Then for a.e y € R, the slice
f(,y) is integrable in R* and the function y — [p. f(z,y)dx is integrable

in R®, we also have
/ f=/ < f(%y)dx) dy
n RY Ra

The theorem is symmetric in z and y so we also have [g, f = [pa (fgo f(z,y)dy) d
and for a.e z € R, f(z,-) is integrable in R® and = — g, f(z,y)dy is
integrable in R.

Corollary 11.2.1 (Tonelli’s Theorem). f : R® = R* x R? — [0,00] is
measurable nonegative function. Then for a.e y € R, f(-,y) is measurable
onR and y — [p. f(x,y)dz is measurable on R?, and

/nf:/Rb< - f(%y)dx> dy

Usually, one applies Tonelli to |f|, where f is measurable on R™, so that
Sl 1= Jzo (Jgalf](z,y)dz) dy, so if the LHS is finite, so is the RHS, hence
f is integrable in R™, so Fubini applies to f,

L= [ ([ fai)a

Corollary 11.2.2 (Cavalieri’s Formula). £ C R® = R® x R® measurable,
then for a.ey € RY, E, is measurable in R*. Also y — m(E,) is a measurable
function and

m(E) = m(Ey)dy
Rb

Corollary 11.2.3. f ACR®*, Ac L, BCR?, B¢€ L, then Ax B C Ret?
is measurable (we already knew that) and m(A x B) = m(A)m(B).
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