MATH 456: ALGEBRA 3 (FALL 2020 SEMESTER)

SHEREEN ELAIDI, BASED ON THE LECTURES OF PROF. GOREN

1. BASIC CONCEPTS AND KEY EXAMPLES

First we'll review some notions from Algebra 1.

Definition 1.1 (Group). A group G is a non-empty set with a set function $m : G \times G \to G$. This can be abbreviated by g * h. This function satisfies the following:

- (1) (Associativity): f(gh) = (fg)h for all $f, gh \in G$.
- (2) (Identity): there is an element $g \in G$ such that for all $g \in G$ we have eg = ge = g.
- (3) **(Inverse)**: for every $g \in G$, there is an element $h \in G$ such that gh = hg = e.

A group with finite element is called of **finite order**. A group is called **abelian** if its commutative.

1.1. Subgroup and Order.

Definition 1.2. A subgroup H of G is a subset of G which obeys the following:

- (1) $e \in H$.
- (2) (Closed under multiplication): $g, h \in H$ implies that $gh \in H$.
- (3) (Closed under inversion): if $g \in H$ then $g^{-1} \in H$.

A cyclic subgroup is a subgroup H for which there is an element $h \in H$ such that $H = \{h^n \mid n \in \mathbb{Z}\}$. We denote the set $\{h^n \mid n \in \mathbb{Z}\}$ by $\langle h \rangle$; it is the cyclic subgroup generated by h. The order of an element $h \in G$, denoted by $\operatorname{ord}(h)$, is the minimal $n \in \mathbb{Z}^+$ such that $h^n = e$. $h \in G$ has infinite order if no such n exists.

Proposition 1.3. Let H be a group and $h \in H$. Then, $\operatorname{ord}(h) = \#\langle h \rangle$.

Proof. Suppose that h has finite order n. To prove this, we'll first show that

$$\langle h \rangle = \{1, h, ..., h^{n-1}\}$$

This will allow us to conclude that $\#\langle h \rangle = n$. Let's prove this statement.

" \supseteq ": Clear from the definition of $\langle h \rangle$.

"⊆": To prove this inclusion, we need to show that $h^n = h^i$ for $0 \le i \le n-1$ and that none of the elements $1, h, ..., h^{n-1}$ are equal. Write r = tn + i, where $0 \le i \le n-1$. Then, this means that we can write

(1.4)
$$h^{r} = (h^{n})^{t} h^{i} = (1)^{t} h^{i} = h^{i} \checkmark$$

Now we need to show that none of the elements $1, h, ..., h^{n-1}$ are equal. For a contradiction, suppose that $h^i = h^j$ are the same, where $0 \le i \le j \le n-1$. This implies that $h^{j-i} = 1_G$, which is a contradiction because 0 < j-i < n. This contradicts that $\operatorname{ord}(h) = n$.

We have the following examples of groups: $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$ and $(\mathbb{Z}/n\mathbb{Z})^+$. Let's investigate these groups further.

- For ℤ, we have that (ℤ, +) is a group. The elements are given by ℤ = {..., −3, −2, −1, 0, 1, 2, 3, ...}. The number of elements in this group, denoted by #ℤ, is infinite.
- If $n \ge 1$ is an integer, then we have the group $\mathbb{Z}/n\mathbb{Z}$; this can also be denoted by \mathbb{Z}_n . There is also a notion of the order of an element in the group. The **order** is the minimum integer n > 0 such that $g^n = 1_G$. That is for a multiplicative group; for an additive group, the order is the minimal n > 0 such that ng = 0 in G.

Date: Fall 2020 Semester.