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Prerequisites

We recall some basic notions for completeness and to introduce the notation.

Definitions 1 (Basic definitions). Let R be a commutative ring.

• An element x ∈ R is a unit if it has a multiplicative inverse.

• An element x ∈ R is irreducible if it is not a unit and it cannot be written as the
product of two non-units.

• An element x ∈ R is prime if for any a, b ∈ R, x | ab implies x | a or x | b.

• A subset I ⊆ R is an ideal if 0 ∈ I and for any a, b ∈ I, r ∈ R, a + rb ∈ I. We
denote I C R.
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• An ideal I C R is prime if I 6= R and for any a, b ∈ R, ab ∈ I implies a ∈ I or
b ∈ I.

• An ideal IC R is maximal if I 6= R and for any ideal JC R with I ⊆ J ⊆ R, either
I = J or J = R.

• We say that R is an integral domain if for any a, b ∈ R, ab = 0 implies a = 0 or
b = 0 (equivalently, the ideal 0 is prime).

• R is a principal ideal domain (PID) if any ideal is generated by one element.

• R is a unique factorization domain (UFD) if any element can be written as a
product of irreducible elements uniquely up to units and ordering.

• R Noetherian if all of its ideals are finitely generated.

• R local if it has a unique maximal ideal, or equivalently if the set R− R× is an
ideal of R.

• 1 Given a multiplicative set S ⊂ R− {0}, we can consider the localization 1 In general, the natural homomorphism
R → S−1R is not injective. It will be if and
only if S does not contain zero divisors
of R. In class, we only used in on integral
domains, so this condition is always
satisfied.

R[S−1] = S−1R = { r
s

: r ∈ R, s ∈ S}/ ∼ ,

where r1
s1
∼ r2

s2
if ∃ s ∈ S such that s(r1s2 − r2s2) = 0. One can verify that S−1R is

a commutative ring.

• If R is an integral domain, we denote Frac(R) to be the fraction field of R (i.e.:
the localization R at the prime ideal 0).

• Let K be a field, a field extension is a field L containing K. The degree of the
extension, denoted [L : K] is the dimension of L as a K-vector space.

• A field extension L/K is algebraic if every element of L is a root of some polyno-
mial in K[x].

• A field extension L/K is separable if for every α ∈ L, the minimal polynomial of
α over K is separable in L (it splits in linear factors).

• Let R be a ring and M be a (left) R-module, the annihilator of an element m ∈ M
is AnnM(m) = {r ∈ R | rm = 0}. It is an ideal of R.

Facts 2 (Basic properties).

Proposition 3. Given a commutative ring R, the following conditions are equivalent :

a) R is Noetherian

b) Every ascending chain of ideals

a1 ⊂ a2 ⊂ · · · ⊂ an ⊂ · · · ,

there exists some N ≥ 1 such that for all m ≥ N, am = aN .

2



c) Every nonempty set S of ideals in R has a maximal element.

Definitions 4. A module M is said to be Noetherian if every submodule is finitely
generated.2 2 This definition and the following proposi-

tion are crucial in our proof of the algebraic
statement of the Nullstellensatz.Proposition 5. Let R be a Noetherian ring. Every finitely generated R-module is Noethe-

rian.

In the first part of the course, we will only work with commutative rings (and
mostly with integral domains), so all the rings will be commutative until we mention
otherwise.

Rings of Dimension One
The main reference for this section is J.S.
Milne’s Algebraic Number Theory, chapter
1-3.

Krull dimension

Definition 6 (Krull dimension). Let R be a ring, its Krull dimension is the maximal
length3 of a strict chain of inclusions of prime ideals in R. 3 The length of a chain I0 ⊂ · · · ⊂ In is

n, i.e.: the number of inclusions (not the
number of ideals).Examples 7.

1. Let R be an integral domain. If its Krull dimension is zero, then R is a field.
Indeed, since 0 is a prime ideal in an integral domain and every prime ideal is
maximal when the Krull dimension is zero, we get R/0 ∼= R is a field.

2. The Krull dimension of Z is one. Since Z is a PID, we can write a chain of length
two as (a1) ⊂ (a2) ⊂ (a3), where the ai’s are distinct prime and a2, a3 6= 0 because
no prime ideal is properly contained (0). Thus, we have two non-zero primes a2

and a3 with a3 | a2 which is absurd. An example of a chain of length one in Z is
0 ⊂ (2).

3. Let k be a field, then the Krull dimension of k[x1, . . . , xn] is n.

4. The ring Z[i]4 has Krull dimension one. We still have the chain 0 ⊂ (2) of length 4 This is the ring Z adjoined with an ele-
ment i that satisfies i2 = −1. Equivalently,
Z[i] ∼= Z[x]/(x2 + 1).

one, thus it is enough to show that if p is a non-zero prime idea, then it is maximal.
Pick some non-zero a + bi ∈ p and let n = (a + bi)(a− bi) ∈ p, it is also non-zero,
so Z[i]/(n) ∼= Z/nZ[i] is finite. Moreover, since (n) ⊆ p, we infer that Z[i]/(n)
maps surjectively onto Z[i]/p and then conclude the latter is a finite integral
domain, hence a field.5 5 Pick any a 6= 0 in a finite integral domain

R, then the multiplication map x 7→ ax
must be injective, and by cardinality, it
must also be surjective, yielding ax = 1
for some x. Note that this argument also
holds when R is a finite dimensional vector
space over a field because the multiplication
map is linear and injectivity still implies
surjectivity.

5. All the previous examples are UFDs but it is not true that a Krull dimension
equal to one implies unique factorization. We can easily see that Z[

√
−5] is

not a UFD as 6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5) are two decompositions in

irreducibles. However, the same argument as for Z[i] works to show this ring
has Krull dimension one.

Proposition 8. If R has Krull dimension one and is a UFD, then it is a PID.
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Proof. Let I be a prime ideal of R, r ∈ I and r = p1 · · · pt be the unique decompo-
sition into primes. Without loss of generality, since I is prime, p1 ∈ I and we get a
prime ideal (p1) ⊆ I. Because R has Krull dimension one, (p1) is maximal and we
conclude I = (p1).

The proposition follows after a simple argument showing that if every prime ideal
of R is principal, then R is a PID. Assume towards a contradiction that R is not a
PID, then it has some non-principal ideals. Every chain of such ideals has an upper
bound,6 therefore, by Zorn’s lemma, there exists a maximal non-principal ideal I. 6 Let {Iα}α∈A be a chain of non-principal

ideals and let I = ∪α∈A Iα, it is an upper-
bound for the chain because if I were
principal, then I = (x) would imply
x ∈ Ii and furthermore I = (x) ⊆ Ii ⊆ I,
contradicting the non-principality of I.

We claim that I is prime. Suppose that ab ∈ I and a, b /∈ I, then (I, a) is strictly
larger than I, hence principal, yielding (I, a) = (c) for c ∈ R. Also, the set I : a :=
{r ∈ R | ra ∈ I} is an ideal containing I and b, thus it is principal and we have
I : a = (d) for d ∈ R. Now, pick any i ∈ I ⊆ (I, a) = (c), it can be written as uc,
hence u · (c) ⊆ I. In particular, we have ua ∈ I, or equivalently u ∈ I : a = (d). We
obtain u = vd and i = vcd which means I ⊆ (cd).

However, we also have (cd) ⊆ I because da ∈ I implies d(I, a) = d(c) ⊆ I. We
conclude that I = (cd), but this contradicts the definition of I.

Integrality

For the following, let R be an integral domain, K = Frac(R) and L be a field contain-
ing K.

Definition 9. An element α ∈ L is said to be integral over R if α is the root of a
monic polynomial with coefficients in R.

Example 10. Say R = Z, K = Q and
L = Q(i). The element i is integral over
Z since it solves x2 + 1 = 0. The element
i
2 is not integral because the minimal
polynomial is x2 − 1

4 = 0 and theorem 17.

Theorem 11. The set of elements of L which are integral over R is a subring of L.

We will give two different proofs of this theorem based on two different lemmas.

Lemma 12 (Newton). Let {e0, . . . , en} be the elementary symmetric polynomials in n
variables, namely,

ei(x1, . . . , xn) = ∑
1≤a1<···<ai≤n

xa1 · · · xai .

All the symmetric polynomials7 in R[x1, . . . , xn] are R-generated by the elementary symmet- 7 A polynomial p in several variables is
said to be symmetric if p ◦ σ = p for any
permutation σ of the variables.

ric polynomials.

First proof of theorem 11. Let α and β be integral over R. Let f ∈ R[x] be a monic
polynomial that α satisfies. We can write

f (x) = xn + an−1xn−1 + · · ·+ a1x + a0 = (x− α1) · · · (x− αn),

where ∀1 ≤ i ≤ n, ai ∈ R, the αi’s are in the splitting field of f and α = α1. If we
expand the R.H.S., we obtain

f (x) =
n

∑
i=0

en−i(α1, . . . , αn)xi,

so we have8 8 In words, applying elementary symmetric
polynomials to α1, . . . , αn yields elements of
R.
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∀0 ≤ i ≤ n, en−i(α1, . . . , αn) = ai ∈ R.

By Newton’s lemma, we infer that for any symmetric polynomial p ∈ R[x1, . . . , xn],
p(α1, . . . , αn) ∈ R.

Let g be the monic polynomial of R[x] that β satisfies and write g = (x −
β1) · · · (x − βm). We can conclude in the same way that for any symmetric poly-
nomial p ∈ R[x1, . . . , xm], p(β1, . . . , βm) ∈ R.

Let

h(x) =
n

∏
i=1

m

∏
j=1

(x− (αi + β j)).

Note that the coefficients of h are symmetric polynomials in α1, . . . , αn and β1, . . . , βm,
and, by appropriately regrouping the terms, we can see them as symmetric polyno-
mials in α1, . . . , αn with coefficients being symmetric polynomials in β1, . . . , βm. By
the previous observation, we conclude h(x) ∈ R[x]. Since h is monic and has α + β

as a root, we have shown that α + β is integral. A similar construction works to show
αβ is integral.

Corollary 13. More generally, for any
polynomial g ∈ R[x1, . . . , xn] and integral
elements α1, . . . , αn ∈ L, g(α1, . . . , αn) is
integral.

Lemma 14. An element α ∈ L is integral over R if and only if there exists a finitely
generated R-submodule M of L such that αM ⊆ M.

Proof. (⇒) Let f ∈ R[x] be a monic polynomial, say of degree n, that α satisfies.
Observe that M = R[α] is finitely generated as a module because it is generated by
1, α, . . . , αn−1.9 It is clear that αM ⊆ M. 9 If we isolate αn in f (α), we see that all

higher powers of α are R-generated by the
powers less than n.

(⇐) Suppose that M = Re1 + · · · + Rem is a finitely generated R-module and
αM ⊆ M. Since for any 1 ≤ i ≤ n, αei can be written as an R-linear combination
of the ej’s, we have a matrix A ∈ Mn(R) such that A[e1, . . . , en]t = α[e1, . . . , en]t. Let
fA = det(xIn − A) be the characteristic polynomial of A, it is a monic polynomial
in R[x] by definition. Moreover, we know that fA(α) = 0 because α is an eigenvalue
of A, so we conclude that α is integral. We may also conclude this from Cayley-
Hamilton which tells us that fA(A) is identically the zero map, then evaluating
fA(A) at any non-zero v ∈ M yields fA(α) = 0.

Second proof of theorem 11. Let α and β be integral over R and let M = Re1 + · · ·+Ren

and N = R f1 + · · ·+ R fm be the modules that satisfy the condition of the lemma
for α and β respectively.

It is clear that MN = {xy | x ∈ M, y ∈ N} is stable under multiplication by both
α and β and MN is clearly generated by {ei f j | i ∈ [n], j ∈ [m]}. Therefore, α + β

and αβ are integral over R.

Definition 15. The ring of elements of L which are integral over R is called the
integral closure of R in L.

Definition 16. An integral domain R is said to be integrally closed if the integral
closure of R in Frac(R) is R itself.

Proposition 17. Assume that R is integrally closed. An element α ∈ L is integral over R
if and only if its minimal polynomial is contained in R[x].
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Proof. (⇐) Follows from the definition of integrality and the fact that the minimal
polynomial is monic.

(⇒) Let f be the minimal polynomial of α over K. For any root β of f , we know10 10 This is an important fact usually proved
in an introduction to Galois theory course.that there exists an isomorphism φ : K[α]→ K[β] such that φ(α) = β and φ|K = idK.

Let p ∈ R[x] be the monic polynomial that α satisfies, we see from applying φ to
p that β also satisfies it and hence any root of f is integral over R. Finally, writing
f = (x − α1) · · · (x − αn) and expanding, we see that the coefficients of f , being
polynomials of integral elements, are integral as well (by corollary 13). As R is
assumed to be integrally closed and the coefficients lie in K, it follows that they are
contained in R, hence we conclude that f ∈ R[x] as desired.

Proposition 18. Assume L/K is an algebraic extension. If S is the integral closure of R in
L, then L/S is a torsion R-module.

Proof. We will show that if α ∈ L, then there exists d ∈ R, such that dα ∈ S. If α ∈ L,
then there is a monic polynomial with coefficients in K satisfied by α (since L is
algebraic), f (x) = xn + an−1xn−1 + · · ·+ a1x + a0, ai ∈ K. We can find a non-zero
d ∈ R such that dai ∈ R for all 1 ≤ i ≤ n.11 We see that dα satisfies 11 For instance, we can let d be the product

of the denominators of the ai’s.

yn + dan−1yn−1 + · · ·+ dn−1a1y + dna0

which is monic and has coefficients in R. The proposition follows.

Corollary 19. The field of fractions of S is L.12 12 Any element α ∈ L can be identified with
dα
d ∈ Frac(S) as seen above. The corollary

then follows because Frac(S) is the smallest
field containing S.

Proposition 20. If R is a UFD, then R is integrally closed.

Proof. Let α = a
b ∈ K be an integral element, since R is a UFD, we can assume that

a and b have no common irreducible factors. If b ∈ R×, then α ∈ R.
Otherwise, there exists an irreducible element π ∈ R such that π | b. By integrality

of α, we have ( a
b

)n
+ cn−1

( a
b

)n−1
+ · · ·+ c1

a
b
+ c0 = 0

If we multiply this by bn, we see that π divides the R.H.S. and all terms other than
the first in the L.H.S., and this leads to a contradiction.13 We conclude that α being 13 Observe that π | 0 always holds and all

terms but the first in the L.H.S. are multi-
ples of b, hence multiples of π. However,
the first term is an and π cannot divided, or
a and b would have common factors.

integral implies α ∈ R.

Examples 21.

1. By the last result, Z and Z[i] are integrally closed because they are UFDs.

2. By the contrapositive of the last proposition, any ring which is not integrally
closed is not a UFD. For instance, Z[2i] is not integrally closed (because i /∈ Z[2i]
is integral over Z) one can indeed verify that it is not a UFD. 14 14 Recall that if p is prime and p ≡

1 (mod 4), then there exists a ∈ 2Z

and b /∈ 2Z such that p = a2 + b2. In
other words, we have a + bi /∈ Z[2i] and
|a + bi| = p.

Let p1, . . . , pn be such primes with decom-
positions pj = a2

j + b2
j . Then,

αj,k = (aj + ibj)(ak + ibk) ∈ Z[2i]

is irreducible because it factorizes in
irreducible elements in the bigger ring Z[i].
It is clear that

α1,2α3,4 = α1,3α2,4,

so Z[2i] does not have a unique factoriza-
tion.

3. Let us find for which n, R = Z[
√

n] is integrally closed. The field of fraction is
K = Q(

√
n) and every element is of the form a + b

√
n with a, b ∈ Q.

If n is a square, then R = Z nad K = Q, so R is integrally closed.
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If n = d2m with d > 1, then
√

m =
√

d2m
d ∈ Q(

√
n) is a root of x2 −m ∈ Z[x], but√

m /∈ Z[
√

n]. Hence, Z[
√

n] is not integrally closed.

Assume n is square-free.

Definition 22. A ring extension S/R is integral if ∀α ∈ S, α is integral over R.

Proposition 23. If S/R is integral and finitely generated as an R-algebra, then S is finitely
generated as an R-module.

Proof. We proceed by induction on n, the number of generators of S as an R-algebra.
If n = 1, then S = R[α], but α is integral, so S is finitely generated as a module (it is
generated by 1, α, . . . , αn−1).

Suppose it is true for n and write S = R[α1, . . . , αn][αn+1]. By induction hypothesis,
we have R[α1, . . . , αn] = Rβ1 + · · ·+ RβN as an R-module. Moreover, since αn+1 is
integral, S is finitely generated as a R[α1, . . . , αn]-module. It follows that S is finitely
generated R-module.

Remark 24. If S2 is a finitely generated
integral extension of S1 and S1 is a finitely
generated integral extension of R, then S2 is
a finitely generated integral extension of R.

Example 25. We want to illustrate the connection between integrality and smooth-
ness.

Let R = k[x], where k is algebraically closed of characteristic 0. Formally, we
have Spec(R) = A1

k = {(x − a) : a ∈ k} ∪ {(0)}, but one can simply see A1
k =

k ∪ {∗} by identifying (x − a) with a and (0) with ∗.15 Thus, Spec(R) = k ∪ {∗} 15 The spectrum of a ring R, denoted
Spec(R), is the set of prime ideals of R, it
will be further studied in a later section.
We will learn to see Spec(R) as a geometric
object associated to R. In general, an
inclusion R ⊂ S corresponds to a map
Spec(S) → Spec(R). We want to give
evidence here that the integral closure of
R ensures the smoothness of Spec(R) and
vice-versa.

can geometrically be seen as a 1-dimensional k-line, with an extra point "at infinity".
Formally, the point at infinity certainly has its importance, but for this example,
think nothing of it. We see that R is integrally closed and that Spec(R) is smooth.

In contrast, let S = k[x, y]/(p(x, y)) for some polynomial p, of degree d in y. The
structure of Spec(S) is slightly more complicated now (it is a variety Vp in A2

k), but
we can think of it geometrically as the zero locus of p(x, y) = 0 in k2. As R ⊂ S,
we have that Vp is related to Spec(R) from the projection Spec(S) = Vp → A1

R =

Spec(R) that maps (a, b) 7→ a. Since k is algebraically closed, we know that given
any point a ∈ k, there exists d solutions (counting multiplicities) of p(a, y) = 0, so
we can think of Vp as a d-sheeted cover of A1

k (i.e. there are d points of Vp above any
given point of A1

k).

If we pick the concrete example S = k[x, y]/(y2 − x2(x + 1)), we want to show
that it is not integrally closed. This is not hard as y

x satisfies t2 − (x + 1). Moreover,
the solution set Vp of y2 = x2(x + 1) (i.e. Spec(S)) is not a smooth curve since the
point (0, 0) is a singularity16. 16 Namely, ∂F

∂x (0, 0) = ∂F
∂y (0, 0) = 0 for

F = y2 − x2(x + 1)
As an exercise, one can try to show that the integral closure of R = k[x] in Frac(S)

is S̃ = k[x][
√

x + 1] = k[x, y]/(y2 − (x + 1)) ∼= k[y]. This would again provide
evidence of an integrally closed ring S̃ such that Spec(S̃) = A1

k = k is smooth.
Moreover, one can check that the natural inclusion S ⊂ S̃ now provides the map
Spec(S̃) = A1

k → Spec(S) = Vp as a 7→ (a2 − 1, a(a2 − 1)). 17 In algebraic geometry, 17 This example is trying to motivate the
notion of integrality, but one does not really
need to understand it to move on in the
notes.

we say that this map provides is the resolution of singularity of Spec(S). One can take
k = C and plot the "R part" of a 7→ (a2− a, a(a2− 1)) to see that this essentially takes
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the real line and "loops it" to cover the "nodal curve" y2 = x2(x + 1) (plot in Desmos
to understand this name). This cover is one-to-one, except over the singularity (0, 0)
where both 0, 1 ∈ R map to it, so this map can be seen as pulling apart both branches
of the "nodal curve", creating a smooth line. This motivates the name for "resolution
of singularity".

Our next big goal is motivated by the following construction. Let K be a finite
extension of Q (resp. of k(x), with k a finite field). The integral closure of Z (resp. of
k[x]) in K is called the ring of integers of K and denoted OK. More generally, if L is
a finite extension of K, then OK ⊂ OL. We know that L ∼= Kn as a K-module, where
n = [L : K].

Question 26. Is it true that OK ∼= Zn, n = [K : Q] or OL ∼= Om
K , m = [L : K]?

We will see that the answers are yes and no respectively.

Definition 27. Let R be an integral domain. An R-module M is said to be free if M
has an R-basis.18 18 i.e.: there exists a set {eα}α∈I that is

linearly independent and generates M. If,
in addition, M is finitely generated, then
M ∼= Rn where n = |I|.

Remark 28. Let S be an R-algebra which is free of finite rank over R. For an element
α ∈ S, we can define mα : S → S to be the endomorphism sending x to αx. If
e1, . . . , en forms an R-basis for S, then we can see mα as an n× n matrix with entries
in R.

Definition 29. In the setting of the above remark, we define the trace of α as the
sum of the diagonal elements of the matrix mα and denote it TrS/R(α). The norm of
α is the determinant of this matrix and we denote it NmS/R(α). Note that the trace
and norm are invariant on the choice of basis.

Example 30. Consider the Hamilton quaternion H = R + Ri + Rj + Rk. Given
an element α = a + bi + cj + dk ∈ H, one can define Tr(α) = 2a and Nm(α) =

a2 + b2 + c2 + d2. On the other hand, recall that there is an embedding H ⊂ M2(C)

given from

1 7→
(

1 0
0 1

)
; i 7→

(
0 −1
1 0

)
; j 7→

(
0 i
i 0

)
; k 7→

(
i 0
0 −i

)

then one readily verifies that the trace of an element corresponds to its trace as
a matrix, and its norm is its determinant. This can serve as motivation for our
definitions above.

Proposition 31. [Some properties of the trace
and norm] For any α1, α2 ∈ S and a ∈ R, we
have

TrS/R(α1 + α2) = TrS/R(α1) + TrS/R(α2)

TrS/R(aα1) = a TrS/R(α1)

NmS/R(α1α2) = NmS/R(α1)NmS/R(α2)

NmS/R(aα1) = an NmS/R(α1).

Definition 32. Let K < L be an extension of fields, we define the trace form on L/K
as 〈a, b〉 = TrL/K(ab) for any a, b ∈ L. Using the properties in proposition 31, one
can show that 〈·, ·〉 is K-bilinear.

Proposition 33. Suppose that L/K is separable, then 〈·, ·〉 is non-degenerate, i.e.:

{a ∈ L | 〈a, x〉 = 0, ∀x ∈ L} = {a ∈ L | 〈x, a〉 = 0, ∀x ∈ L} = {0}.
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We need the following lemma that we state without proof.

Lemma 34. A field extension L < K is separable if and only if TrL/K 6≡ 0.

Proof of proposition 33. Assume towards a contradiction that 0 6= a ∈ L is such that
〈a, x〉 = 0 for all x ∈ L, then aL ⊆ {` ∈ L | TrL/K(`) = 0}. On the other hand, since
the multiplication map a : L→ L is an isomorphism of K-vector spaces (its inverse
being multiplication by a−1), we have aL = L. Thus, all elements have trace zero,
but this contradicts the lemma.

As a consequence of this result, we get a K-vector space isomorphism L →
Hom(L, K) that sends a to 〈a, ·〉.19 If {γ1, . . . , γd} is a basis for L as a K-vector space, 19 The fact that the trace form is bilinear

and non-degenerate yields injectivity and
surjectivity follows because both sides have
the same dimension.

then we write γ∗1 , . . . , γ∗d for the dual basis of L∗ where γ∗j (γk) = δj,k (Kronecker
delta). The isomorphism lets us think of these basis elements as living in L and write〈

γi, γ∗j

〉
= δi,j.

Proposition 35. Let L/K be an extension of fields of degree n, and let β ∈ L with minimal
polynomial f over K. Say that β1, . . . , βm are the disctinc roots of f in L. Then,

TrL/K(β) = r(β1 + · · ·+ βm) and NmL/K(β) = (β1 · · · βm)
r

where r = [L : K[β]] = n/m.

Corollary 36. Let L/K and β be as above. If L/K is separable, with Aut(L/K) = {σ1, . . . , σn},
then

TrL/K(β) = σ1β + · · ·+ σnβ) and NmL/K(β) = σ1β · · · σnβ

and so, if we also have that R is integrally closed and β ∈ L is integral over R, then both
TrL/K(β) and NmL/K(β) are in R.

Proposition 37. Assume that R is integrally closed in K = Frac(R), let K < L be a
separable field extension of degree d and S be the integral closure of R in L. Then, there exist
free R-modules Ω and Ω∗ of rank d in L such that Ω ⊆ S ⊆ Ω∗.

Proof. Let γ1, . . . , γd be a basis for L/K. By proposition 18, there exists some 0 6= a ∈
R such that aγi ∈ S for all i. Set γi = aγi, they still form a linearly independent set
over K, hence Ω = Rγ1 ⊕ · · · ⊕ Rγd is a free R-submodule of L and clearly Ω ⊆ S.

Let Ω∗ = Rγ∗1 ⊕ · · · ⊕ Rγ∗d (with the identification of γ∗i in L). We claim that
S ⊆ Ω∗. If α ∈ S, then we can write α = x1γ∗1 + · · · + xdγ∗d where xi ∈ K, since
{γ∗1 , . . . , γ∗d} also provides a K-basis of L. Since 〈·, ·〉 is K-bilinear, we have

TrL/K(α · γj) =
〈
α, γj

〉
=

d

∑
i=1

xi
〈
γ∗i , γj

〉
= xj.

As α, γj ∈ S, we know that xi = Tr(αγj) ∈ R from corollary 36. The proposition
follows.

Corollary 38. If R is Noetherian, then S is a finitely generated R-module. If R is a PID,
then S = Rd.

Theorem 39. Let S be the integral closure of R in a separable extension L/K of degree d.
Then, S be a finitely generated R-module and if R is PID, then S is free of rank d over R.
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Dedekind Domains

Definition 40. An integral domain R is a Dedekind domain if

(i) R is Noetherian (finiteness),

(ii) R is integrally closed (smoothness), and

(iii) Every non-zero prime ideal of R is maximal.20 20 Note that a Dedekind can have Krull
dimension zero or one. In the former, the
last property is vacuously satisfied.Example 41. We have already seen that Z[i] satisfy theses three properties,21 so they
21 They are Noetherian because they are the
quotient of the Noetherian ring Z[x], they
are integrally closed by examples 21 and
they have Krull dimension one by examples
7.

are Dedekind domains.

Proposition 42. If R is a Dedekind domain and S ⊆ R \ {0} is a multiplicative set, then
R[S−1] is also a Dedekind domain.

Proof. We will prove that if R satisfies any property from the definition above, then
R[S−1] also satisfies it.

(i) Suppose R is Noetherian and let aC R[S−1], we have a = (a ∩ R)[S−1]. More-
over, since R is Noetherian, a ∩ R is finitely generated by x1, . . . , xn ∈ R, but
then x1, . . . , xn also generate a as an R[S−1] module. We conclude that any
ideal of R[S−1] is finitely generated, so R[S−1] is Noetherian.

(ii) Suppose R is integrally closed and let α ∈ Frac(R) = Frac(R[S−1]) be integral
over R[S−1], then α satisfies the polynomial xn + an−1xn−1 + · · · + a0 with
ai ∈ R[S−1]. By the construction of R[S−1], there exists s ∈ S such that sai ∈ R
for every i. Multiplying the polynomial by sn, we find that sα satisfies a monic
polynomial with coefficients in R[x].22 Since R is integrally closed, sa ∈ R, 22

snαn + snan−1αn−1 + · · ·+ sna0 = 0

(sα)n + san−1(sα)n−1 + · · ·+ sna0 = 0

implying a ∈ R[S−1]. We conclude that R[S−1] is integrally closed.

(iii) Suppose R has Krull dimension one. Recall that Spec(R[S−1]) = Spec(R) \ IS

where IS is the set of prime ideals of R that intersect S. Moreover, we have the
following natural correspondence for a ∈ Spec(R[S−1]): R[S−1]/a ∼= R/(a∩R).
However, a ∩ R is a non-zero prime ideal, so it must be maximal. This implies
the R.H.S. is a field, so the L.H.S. is also a field, yielding that a is a maximal
ideal. We conclude that R[S−1] has Krull dimension one.

Corollary 43. If p is a prime ideal of a Dedekind domain R, then Rp
23 is a Dedekind domain 23 If p is a prime ideal, then R − p is a

multiplicative set not containing 0 and Rp

denotes the localization of R at R− p.
with a unique non-zero prime ideal pRp.

Proof. We just saw that Rp is a Dedekind domain. Assume towards a contradiction
that there is a non-zero prime ideal other than pRp, by one-dimensionality, it cannot
be contained or contain pRp. Hence, it contains some 0 6= x ∈ Rp \ pRp. We can
write x = a

b where a, b ∈ R \ p are non-zero, thus x is a unit with inverse b
a , thus this

ideal is the whole ring, contradicting its primeness.

Definition 44. A Dedekind domain which is local (i.e.: has a unique non-zero prime
ideal) is called a discrete valuation ring (DVR).
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Proposition 45. Assume R is Noetherian.24 If all the localizations at non-zero prime ideals 24 This assumption is necessary as there
exists non-Noetherian domains with all
their localizations being DVR’s. Instead
of assuming R is Noetherian, one could
also assume every non-zero element of R is
contained in finitely many maximal ideals.

of R are DVR’s, then R is a Dedekind domain.

Proof. We need to show that Rp being Dedekind for all p ∈ Spec(R) implies R is
Dedekind. Suppose all the localizations at prime ideals are Dedekind domains, then
we show R satisfies each property.

(i) By assumption.

(ii) Let α ∈ Frac(R) be integral over R and a = {x ∈ R | xα ∈ R}C R. For all
prime ideals p, α is integral over Rp (since R ⊆ Rp), so α ∈ Rp because Rp is
integrally closed. Then, there exists s ∈ R− p such that sα ∈ R, thus the ideal
a is not contained in p. Letting p vary over Spec(R), we conclude that a is not
contained in any maximal ideal implying a = R. Since 1 ∈ a, 1α = α ∈ R, so R
is also integrally closed.

(iii) Assume p be a non-zero prime ideal that is not maximal, then it is contained in
another prime ideal q. However, we observe that pRq ⊂ qRq are also non-zero
prime ideals of Rq and this contradicts the fact Rq is a DVR.

Theorem 46. Let A be a DVR (and not a field) and pC R be the unique prime ideal, then
p is a principal ideal.

Proof. Let 0 6= c ∈ A \ A×. Observe that A/(c) is a non-zero A-module so we can
choose 0 6= b + (c) ∈ A/(c) such that I = AnnA/(c)(b + (c))C A is maximal among
all choices of b.25 In other words, we choose b such that there is no proper ideal of 25 This choice can be made because A

is Noetherian, thus every collection of
ideals (in our case {AnnA/(c)(m) | m ∈
A/(c) \ {0}}) has a maximal element.

A which arises as AnnA/(c)(x + (c)) for some x ∈ A and properly contains I.
First, we claim that I is a non-zero prime ideal. Suppose x, y ∈ A and xy ∈ I,

namely, xyb ∈ (c). If x /∈ I, then xb /∈ (c) and xb + (c) is non-zero in A/(c). Let
I′ = AnnA/(c)(xb + (c)), we clearly have I′ ⊇ I and I′ ⊇ (y).26 Therefore, I′ = I by 26 If ab ∈ (c), then axb ∈ (c), so

I′ = AnnA/(c)(xb+(c)) ⊇ AnnA/(c)(b+(c)) = I,

and since yxb + (c) = 0, we have (y) ∈
AnnA/(c)(xb + c).

maximality of I and we obtain y ∈ I. We conclude that I is prime (it is not the whole
ring by definition and it is non-zero because c ∈ I).

Second, we must have p = I, so it is enough to show that I is principal. Since c is
not a unit, b

c ∈ Frac(A) is not in A. Furthermore, by definition of I, b
c IC A. Assume

towards a contradiction that b
c I ⊆ I, then since I is a finitely generated A-module27, 27 Since A is Noetherian.

we find that b
c is integral (by proposition 14) and b

c ∈ A by integral closure, so we get
a contradiction. Thus, we must have b

c I = A, then I = ( c
b ). In particular, b divides c

and π = c
b is a generator for I = p.

Proposition 47. If A is a DVR, then A is a PID.

Proof. Let π be a generator of p, the unique non-zero prime ideal of A and let IC A.
We will show that I is generated by one element. Consider the sequence I ⊆ π−1 I ⊆
π−2 I ⊆ · · · in the fraction field K = Frac(A). We claim that π−j I 6= π−(j+1) for any
j, otherwise π−1(π−j I) ⊆ π−j I implies that π−1 is integral28 and hence π−1 ∈ A 28 It follows from proposition 14 and the

fact that π−j I is finitely generated because
A is Noetherian.

contradicting the primeness of p = (π) = A. We conclude that this sequence is
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strictly increasing. Since A is Noetherian, there must be some j such that π−j I ⊆ A
and π−1(π−j I) 6⊆ A, thus π−j I 6⊆ (π). However, (π) is the only maximal ideal, so
we must have π−j I = A and we obtain I = π j A = (π j).

Corollary 48. Every ideal of a DVR is generated by π j where j ∈N and π is the generator
of the unique prime ideal.

Corollary 49. If A is a DVR, then every a ∈ A can be written as uπn where n ≥ 0 and
u ∈ A×.

Proof. Write (a) = (π j) for some j and conclude that a and π j must be associates.29 29 i.e.: there exists u ∈ A× such that
a = uπn.

Corollary 50. Every element of K = Frac(A) can be written as uπ j where j ∈ Z and
u ∈ A×.

Definition 51. We define j to be the valuation of a in A and write v(a) = j. We also
write v(a) = ordπ(a).

Proposition 52. v(ab) = v(a) + v(b) and v(a + b) ≥ min{v(a), v(b)}.30 30 Write a = uπi and b = u′π j, without loss
of generality, i ≤ j. Then,

ab = uπiu′π j = u′′πi+j,

so v(ab) = i + j = v(a) + v(b). Also,

a+ b = πi(u+u′π j−i) = πi(u′′πk) = u′′πi+k ,

hence v(a + b) ≥ min{v(a), v(b)}.

Example 53. Recall that A = Z[
√
−5] is a Dedekind domain but 2 · 3 = (1 +√

−5)(1−
√
−5) are two decompositions of 6 into irreducibles, so it is not a UFD. We

can also write the prime ideal decomposition (6) = (2, 1 +
√
−5)2(3, 1 +

√
5)(3, 1−√

5).
Let p = (3, 1 +

√
−5), it is a prototypical example of a non-principal ideal in

Z[
√
−5]. Consider the localization of A at p and the ideal that p generates. It is now

principal because 1+
√
−5 divides both 1+

√
−5 and 3 (as 3 = 1−

√
−5

2 · (1+
√
−5)).

Exercise 54. Show that (2, 1 +
√
−5) is principal in Ap with p = (2,

√
−5), but

(2, 1 +
√
−5) 6= (2).

Our next goal is to show that ideals have unique decompositions as prime ideals
in Dedekind domains.

Lemma 55. Suppose A is a Noetherian integral domain, then any ideal I C A contains a
product of prime ideals.

Proof. Let Σ be the set of ideals I C A which do not contain a product of prime
ideals. Assume towards a contradiction that Σ is not empty, let J be a inclusion-wise
maximal in Σ.31 In particular, J is not prime, so there exists a, b /∈ J, ab ∈ J. Let 31 A being Noetherian guarantees the

existence of J.J1 = (a) + J and J2 = (b) + J, by maximality, we can find prime ideals p1, . . . , pr and
q1, . . . , qs such that J1 = p1 · · · pr and J2 = q1 · · · qs, thus J ⊃ J1 J2 ⊇ p1 · · · prq1 · · · qs,
which contradicts J ∈ Σ.

Lemma 56. If I and J are relatively prime ideals32, then so are Im and Jn for any m, n ∈N. 32 i.e.: I + J = A.

Proof. Since I + J = A, there exists i ∈ I and j ∈ J such that 1 = i + j and we can
write

1 = 1m+n = (i + j)m+n =
m+n

∑
k=0

im+n−k jk.

12



Notice that every term of the R.H.S. is either divisible by im or by jn, thus 1 ∈ Im + Jn.
The lemma follows.

Lemma 57. Let A be a Dedekind domain. For any prime ideal pCA, the inclusion A ↪→ Ap

induces an isomorphism A/pn ∼= Ap/pn Ap for any n ∈N.

Proof. Fix n ∈N, let f : A→ Ap/pn Ap be the composition of the inclusion with the
projection Ap � Ap/pn Ap and note that

ker( f ) = A ∩ pn[(R− p)−1] = pn.

Moreover, to see that f is surjective, observe that for any a
s ∈ Ap, we have pn + (s) =

A,33 so there exists x ∈ pn and y ∈ A such that x + sy = 1. Consequently, y is sent 33 Since s is not in the unique maximal
ideal p, s and p must generate A otherwise
pn + (s) would sit in a different maximal
ideal.

to 1
s (mod pn) and ay to a

s (mod pn). The lemma follows from the first isomorphism
theorem.

Theorem 58. If A is a Dedekind domain, then every non-zero ideal I can be uniquely
written (up to permutations) as I = pe1

1 · · · p
er
r where ej ≥ 0 and pj are prime ideals.

Proof. Let I C A, lemma 55 yields J = p
r1
1 · · · p

rn
n ⊆ I. By the Chinese Remainder

Theorem (CRT), lemma 56 which says that p
ri
i is coprime to p

rj
j for all i 6= j and

lemma 57, we obtain34: 34 Abusing notation, we write pi
i for both the

ideal in A and the ideal generated by pi
i in

Api .A/J = A/pr1
1 · · · p

rn
n
∼= A/pr1

1 × · · · × A/prn
n
∼= Ap1 /pr1

1 × · · · × Apn /prn
n .

The map A→ A/J induces a bijection between the ideals of A containing J and the
ideals of I/J. The image of I in Ap1 /pr1

1 × · · · × Apn /prn
n is of the form

πe1
1 Ap1 /pr1

1 × · · · × πen
n Apn /prn

n ,

where ei ≤ ri
35. On the other hand, the ideal pe1

1 × · · · × per
r is another ideal contain- 35 Because each Api is a DVR where every

ideal is generated by some power of πi (the
generator of the unique prime ideal), recall
corollary 48. To see that ei ≤ ri , observe
that πi ∈ pi , so it vanishes in Api /p

ri
i when

raised to the power ri .

ing J which has the same image in A/J, so this is the decomposition of I. Further-
more, the exponents depend only on I.

Many properties of ideals in Dedekind domains can be checked "locally".

Corollary 59.

I = J ⇔ IAp = JAp, ∀p ∈ Spec(A)− 0

I ⊆ J ⇔ IAp ⊆ JAp, ∀p ∈ Spec(A)− 0

Proof.

Corollary 60. If a Dedekind domain A has finitely many prime ideals, then A is a PID.

Proof. Suppose Spec(A) = {0, p1, . . . , pr}, it is enough to show pi is principal for
every i.36 Choose a ∈ A which is congruent to πi modulo π2

i where πi generates 36 Recall the proof of proposition 8.

pi Api and congruent to 1 modulo pk for any k 6= i. By the CRT, we can find such an
a and it is clear that (a) = pi.

Lemma 61. If I ⊇ J are two ideals of A, then there exists a ∈ I such that I = (a) + J.
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Proof. Consider the decompositions

I = p
e1
1 · · · p

er
r J = p

f1
1 · · · p

fr
r , ∀1 ≤ i ≤ r, er ≤ fr,

where some ei can be zero. Choose a ∈ π
ej
j \ p

ej+1
j for j = 1, . . . , r.

Proposition 62. Any ideal in a Dedekind domain A can be generated by at most two
elements of A.

Proof. Choose an element 0 6= b ∈ I, we have I ⊇ (b) 6= 0 and by lemma 61, ∃a ∈ I,
(a) + (b) = I.

Proposition 63. If I is a non-zero ideal of A, then there exists an ideal (far from unique) J
such that I J is principal.

Proof. Write I = p
e1
1 · · · p

er
r and pick a ∈ I, then (a) = p

f1
1 · · · p

fr
r

37 with ej ≤ f j. Let 37 Although it was used before the choice
of a, the index r is determined by it. In-
deed, (a) might have more primes in its
decomposition than I, but for simplicity, we
assume that some ej’s might be zero.

J = p
f1−e1
1 · · · p fr−er

r . The proposition follows.

Definition 64. For a Dedekind domain A, we define the multiplication monoid of
ideals of A as IA = {0 6= I C A} with operation being multiplication of ideal. We
denote PA to be the submonoid of non-zero principal ideal, it corresponds exactly
to (A− {0})/A×.38 38 A corollary of this last proposition is that

IA/PA is an abelian group (any element has
an inverse) it is called the class group of A.Theorem 65. Let A be a Dedekind domain, K = Frac(A), and B be the integral closure of

A in L, a finite extension of K. Then, B is a Dedekind domain.

Proof.

(i) We already showed B is finitely generated as an A-module in theorem 39.
Consequently, any ideal of B is finitely generated as an A-module39 and, a 39 Recall that a ring R is Noetherian if

and only if any submodule of a finitely
generated R-module is finitely generated.

fortiori, as a B-module. We conclude that B is Noetherian.

(ii) B is integrally closed by definition.

(iii) Let β be a non-zero prime ideal of B. Let b ∈ β be non-zero, it is integral over
A, so it satisfies

bn + an−1bn−1 + · · ·+ a1b + a0 = 0,

where ai ∈ A and a0 6= 0. After isolating a0, we see that a0 is A-generated by
powers of b, so that a0 ∈ β ∩ A =: pC A, it is clear that p is a non-zero prime
ideal40. Consider B/β as an A/p-algebra, the containment map being 40 It is non-zero because it contains a0 and it

is prime because β was prime in the bigger
ring B.a + p 7→ a + β : A/p ↪→ B/β.

The fact that B is a finitely generated A-module implies that B/p is a finitely
generated (A/p)-module and hence B/β is finitely generated over (A/p). Now,
we also have that p is maximal because A is Dedekind, so A/p is a field and
we obtain that B/β is a finite dimensional vector space. Moreover, since B/β is
an integral domain41, multiplying by any non-zero element yields a full rank 41 Because β is prime.

linear map. Therefore, we can find an inverse to any non-zero element and we
can conclude that B/β is a field and that β is maximal.
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Until the end of this section, we will work in the following setting. Let A be a
Dedekind domain, K = Frac(A), K < L be a field extension of degree n and B be
the integral closure of A in L such that B is locally free over A.42 42 i.e.: for any prime ideal pC A, BpB is free

over Ap.
Definition 66. If β is a non-zero prime ideal of B, then dimA/(β∩A)(B/β) is called
the residue degree of β and denoted fβ. If there exists some prime ideal pC A such
that pB decomposes uniquely as βe1

1 · · · β
et
t where β1 = β, e1 is called the ramification

index of β in B/A, it is denoted eβ.43 43

Lemma 67. A prime ideal β divides pB if and only if p = β ∩ K.

Proof. (⇒) It is clear that p ⊆ β ∩ K because any element in p is in a product of
ideals including β and thus in β. Also, since p is maximal and β ∩ K is an ideal, we
have p = β ∩ K.

(⇐) If p ⊆ β, then pB ⊆ β, thus pBβ 6= Bβ
44. However, if β did not divide pB, then 44 Because no element of β has an inverse in

Bβ.we would get all of Bβ when localizing at β.

Theorem 68. For any prime ideal pC A with pB = βe1
1 · · · β

et
t , if fi is the residue degree

of βi in B/A, then ∑t
i=1 ei fi = n.

Proof. On one hand, from the following derivation45, we see that B/pB is isomorphic 45 Where the isomorphisms are as vector
spaces over (A/p).to (A/p)n:

B/pB ∼= Bp/pBp (by lemma 57)
∼= An

p/(pAn
p) (by local freeness46)

∼= (Ap/pAp)
n

∼= (A/p)n (by lemma 57).

On the other hand, from the CRT, we know that 46 We know from the proof of proposition 37

that B is both contained and contains free
A-modules of rank n. After localizing at
p, we get that Bp is between two free (Ap)-
modules of rank n, but by local freeness,
it is also finitely generated, so it must be
isomorphic to (Ap)n.

B/pB ∼= B/βe1
1 × · · · × B/βet

t ,

as vector spaces over (A/p). Therefore, it is enough to show that for all 1 ≤ i ≤ t,
the dimension of B/β

ei
i is ei fi. We will show this by induction on ei.

First, observe that for any 1 ≤ k ≤ ei − 1, βk
i /βk+1

i is a (B/βi)-module of dimen-
sion one. One can easily check that (a + βi)(b + βk+1

i ) := (ab + βk+1
i ) for any a ∈ B

and b ∈ βk
i is a suitable scalar multiplication. Furthermore, by the fourth isomor-

phism theorem, any non-trivial strict subspace of βk
i /βk+1

i must come from an ideal
βk+1

i ⊂ V ⊂ βk
i . However, no such ideal can exist because βi is prime, so βk

i /βk+1
i

must have dimension one.
Our base case (when ei = 1) follows from the definition of fi. Suppose that

B/β
ei−1
i has dimension (ei − 1) fi over A/p. Then, we have the following short exact

sequence of modules

0→ β
ei−1
i /β

ei
i → B/β

ei
i → B/β

ei−1
i → 0.

By a basic result from the study of modules, we get that the dimension of B/β
ei
i is

(ei − 1) fi + fi = ei.
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Theorem 69. If L/K is a Galois extension with Galois group G, then G acts transitively
on the set of prime ideals dividing pB. In particular, for all β | pB, the ramification number
eβ = e depends only on p and likewise for fβ = f . Hence, n = t · f · e.47 47 t is the number of distinct prime ideals

dividing p.
Proof. Suppose G does not act transitively, then there exists β0 | p and β1 | p such
that β0 6= σβ1 for all σ ∈ G. Hence, there exists an element a ∈ β0 such that a /∈ σβ1

for all σ ∈ G, equivalently, σ−1a /∈ β1. Since β1 is prime, we have

Nm(a) = ∏
σ∈G

σ−1a /∈ β1.

However, we also know that Nm(a) ∈ β0 ∩ A = p ⊆ β1
48, so we have a contradiction. 48 We know that Nm(a) ∈ β0 because it

is a multiple of a ∈ β0. We know that
Nm(a) ∈ A because B is integral over A.
We know that β0 ∩ A = p by lemma 67.Definition 70. Let pC A be prime. If, for some prime ideal βC B, β2 | pB, then we

say that p ramifies (or is ramified) in B/A.

Our last goal in this section is to show that there are only finitely many primes
that ramify in B/A.

Definition 71 (Discriminant). If B ∼= An as an A-module, then we define

disc(B/A) = det
((

TrL/K(eiej)
)

i,j

)
∈ A,

where {e1, . . . , en} is an A-basis for B. Otherwise, we still have that B is locally free
over A, so disc(BpB/Ap) = u · πep ∈ Ap.49 Thus, we can define, in general, 49 Recall that Ap is a DVR, so we have this

decomposition where π is the generator of
the unique non-zero prime ideal and u is a
unit.

disc(B/A) = ∏
p prime

pep C A.

Remark 72. The general definition is compatible with the definition for PIDs because
if B = Ae1 ⊕ · · · ⊕ Aen, then Bp = Ape1 ⊕ · · · ⊕ Apen.

Theorem 73. A prime ideal pC A is ramified in B/A if and only if p | disc(B/A).

Proof. We claim that

disc(B/A) ≡ disc(Bp/Ap) (mod p) ≡ disc((Bp/p)/(Ap/p)) (mod p).

By the previous remark, we also have (Bp/p) = (Ap/p)ē1 ⊕ · · · ⊕ (Ap/p)ēn. 50 50 Argue that they are linearly independent.

If B is an A-algebra which is free of rank N
as an A-module, the discriminant is really
an eliment of A/Atimes2

On the other hand, p = βe1
1 × · · · × βet

t , thus Bp/p = Bp/βe1
1 × · · · × Bp/βet

t as
(Ap/p)-algberas. Moreover, if B = B1 × · · · × Bt as k-algebras, then disc(B/k) =

disc(B1/k) · · ·disc(Bt/k) (matrix that is considered in the discriminant and we can
write it as block matrix).

It remains to understand the discriminant of Bp/βe where β is a prime ideal of B.
Note that this algebra is isomorphic to a field if e = 1, but it has non-zero nilpotent
elements if e > 1. The discriminant of a field extension is non-zero (because the trace
form is non-degenerate). However, when there are nilpotent elements, the trace form
is degenerate, so the discriminant is zero.

Corollary 74. There are finitely many ramified primes in B/A.
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Examples 75.

1. Let B = Z[i] and A = Z, their fraction fields are Q(i) and Q respectively and they
fit in the general set-up of this section with n = [Q(i) : Q] = 2. Let the A-basis
for B be {1, i}, we can readily compute

disc(Z[i]/Z) = det

[
2 0
0 −2

]
= −4.

Let p ∈ Z be prime, we will investigate the factorization of (p) in Z[i]. If p = 2,
then we notice (2) = (1 + i)(1− i) = (1 + i)2, thus t = 1 and e = 2. Also, because
Z[i]/(2) identifies 1 = −1 = i2, we find that it is isomorphic to Z/2Z, so f = 1.
Otherwise, we have Z[i]/(p) = Z/pZ[x]/(x2 + 1) and we consider two cases.

If p ≡ 1 (mod 4), then −1 has a square root a ∈ Z/pZ and x2 + 1 = (x− a)(x+ a)
is reducible, thus

Z[i]/(p) ∼= Z/pZ[x]/(x− a)×Z/pZ[x]/(x + a) ∼= Z/pZ×Z/pZ,

and f = 2. Furthermore, we now see that p = (p, i − a)(p, i + a), so t = 2 and
e = 1 which confirms that (p) does not ramify because it does not divides −4.

If p ≡ 3 (mod 4), then x2 + 1 is irreducible, so Z/pZ[x]/(x2 + 1) ∼= Fp2 and (p)
is prime in Z[i], we obtain t = 2, e = 1, f = 2.

2. Let R = Z[ 3
√

2] ⊂ B = O
Q( 3√2). We can compute

disc(R/Z) = det

3 0 0
0 0 6
0 6 0

 = −33 · 22.

We get that R(p) = B(p) for any p 6= 2, 3. For such a p, we have

B/(p) = B(p)/(p) = R(p)/(p) = R/(p) = Z[x]/(x3− 2)/(p) = Z/pZ[x]/(x3− 2)

We are now in a nicer ring (a UFD), so the strucutre is really nice. α = 3
√

2 On the
other hand, we have (2) = ( 3

√
2)3 and (3) = ( 3

√
2 + 1)3 in R(3)

51. We have (5) = 51 detail this

(5, α + 2)(5, α2 + 3α + 4) because (x3 − 2) ≡ (x + 2)(x2 + 3x + 4) = p1p2 (mod 5).
We see that B/p1 = Z/5Z, but B/p2 = Fp5. So f1 = 1 and f2 = 2.

In (7), (x3− 2) is irreducible, so f = 3. For (11) = (11, α + 4)(11, α2 + 7α + 5) and
(13) = (13). Interestingly, (31) = (31, α + 11)(31, α + 24)(31, α + 27). Doing this
for many primes, we see that 50% of the time, f1 = 1 and f2 = 2 occurs. f = 3
occurs 33% of the time. f1 = f2 = f3 = 1 occurs 16.6% of the time. Notice that
this happens because Q(α) is not Galois.

Remark: these proportions are predicted by the Chebotarev density theorem. In
particular, if K/Q is a cyclic Galois extension of degree 3 with polynomial f (x),
then f (x) (mod p) factors either into three linear factors or is irreducible. Interest-
ing questions, are there any patterns satisfied by the function p 7→ ( f1, f2, . . . , ft).
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Z C[t]
Q C(t)
K > Q, [K : Q] < ∞ C(t)[x]/(xn + an−1(t)xn−1 + · · ·+ a1(t)x + a0(t)) where ai(t) ∈ C[t], so we indeed have p(t, x) ∈ C[t, x].

Remark 76. Explaination of the terminology of ramification. The first appearance of
this theory was motivated by the study of Riemann surfaces. Let p(t, x) ∈ C[t, x]
and S = {(t, x) ∈ C2 | p(t, x) = 0} is a curve in C because it is one dimension but
topologically it is more of a surface because we are in C. We have the following
analogies. The function S → C = (t, x) 7→ t is generically n-to one except for
t ∈ R := {t ∈ C | xn + an−1(t)xn−1 + · · · a1(t)x1 + a0(t) has multiple roots = {t |
δ(t) = 0, δ = discx(Pt(x))} is called the ramification locus.

Commutative Algebra and Algebraic Geometry
The main reference for this section is Ernst
Krunz’s Introduction to Commutative Algebra
and Algebraic Geometry, chapter 1-4.

The main objects studied in algebraic geometry are algebraic varieties, we first
introduce two kinds of such objects in the two following sections and then move to
a more abstract setting.

Affine Varieties

Definition 77. Let k be a fields, we denote An(k) to be the affine n-space isomorphic
to kn.52 If k is algebraically closed, then An(k) can be identified with the maximal 52 In this class, we will always view the

affine n-space as kn.ideals of k[x1, . . . , xn].

Definition 78. A variety V over k is a system of polynomial equations of the form
f1(x1, . . . , xn) = 0

...
fm(x1, . . . , xn) = 0

 ,

where f1, . . . , fm ∈ k[x1, . . . , xn]. For a k-algebra L, we denote V(L) to be the set of
solutions of this system in Ln.

Examples 79. Here are a few brief examples that we might study more in depth in
this section. In the context of the above definition:

• We talk about a linear variety if deg f1 = · · · = deg fm = 1.

• We talk about hypersurfaces when m = 1.

• We talk about quadric hypersurfaces when deg f1 = 2 and m = 1, they are a
generalization of conic surfaces.

• More generally, if deg f1 = · · · = deg fm = 2, then V is a quadric variety.

• We say that V is a cone when f1, . . . , fm are homogeneous53. Such varieties have 53 We say that a polynomial is homogeneous
if all of its monomials have the same
degree.

a nice scaling property, namely,

(a1, . . . , an) ∈ V(L) =⇒ (λa1, . . . , λan) ∈ V(L), ∀λ ∈ L.
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• With more generality, one can consider quasi-homogeneous varieties, they satisfy
that for some fixed {mi}i∈[n] ⊂ N and m ∈ N and for all monomials cxr1

1 · · · x
rn
n

of the polynomial f j, ∑n
i=1 rimi = m. We then have

(a1, . . . , an) ∈ V(L) =⇒ (λm1 a1, . . . , λmn an) ∈ V(L), ∀λ ∈ L.

• If V1 is a system { f1, . . . , fm} and V2 is a system {g1, . . . , gl}, then we can build
another variety54 54 The notation ∩ is justified because for

any L > k, we have (V1 ∩ V2)(L) =
V1(L) ∩V2(L).

V1 ∩V2 = { f1, . . . , fm, g1, . . . , gl}.

The variety V1 ×V2 arises from considering the same set but viewing the polyno-
mials in k[x1, . . . , xn, y1, . . . , yn] where f j ∈ k[x1, . . . , xn] and gj ∈ k[y1, . . . , yn].55 55 The notation × has the same justification

as ∩.
• We can look at some common groups with the point of view of varieties. For

instance, we can see GLn as a subset of An2+1 with the variables xi,j for i, j ∈ [n]
and t. Observe that det((xi,j)) is a polynomial of degree n in n2 variables and that

the solutions in Ln2+1 of the equation t det(xi,j)− 1 = 0 are precisely matrices
with invertible determinants in L, namely GLn(L), where L is any k-algebra. It
has a natural group structure arising from the multiplication of matrices. This is
what we call an algebraic group.

Definition 80. To a variety V ⊆ An over k, we can associate two related ring theoretic
invariants. First, the ideal I(V)C k[x1, . . . , xn] of polynomials that are identically 0 on
V. Second, the coordinate ring of V, denoted OV , is the quotient k[x1, . . . , xn]/I(V).
We can think of the latter as polynomially defined functions on V.

The general problem that is studied in this section is to understand the relation
between the collection {V(L) | L is a k-algebra} and I(V) or OV . We start with a
very useful fact about the map L 7→ V(L). It will use Hilbert’s basis theorem, so we
prove it for completeness.56 56 In fact, we prove a more general state-

ment.
Theorem 81. If R is Noetherian, then R[x] is Noetherian.

Proof. We show the contrapositive. Suppose I C R[x] is not finitely generated. Let
f1(x) be a non-zero element of I of minimal degree d1 and a1 be its leading coefficient.
Let f2 be the element of smallest degree in I− ( f1), it has degree d2 ≥ d1 and leading
coefficient a2. Inductively, let f j be the element of smallest degree in I− ( f1, . . . , f j−1)

with degree dj and leading coefficient aj. Since I is not finitely generated, we will
always find non-zero elements, so we get an infinitely many ai’s. We claim that

(a1) ⊂ (a1, a2) ⊂ · · · ⊂ (a1, . . . , aj) ⊂ · · · .

Suppose one inclusion is not strict at some point j, then we can write aj+1 = λ1a1 +

· · ·+ λjaj. Therefore, the degree of

f j+1 − λ1xdj+1−d1 f1 + · · ·+ λjx
dj+1−dj f j ∈ I

is strictly less than dj+1, so this polynomial belongs to ( f1, . . . , f j). However, this
implies that f j+1 ∈ ( f1, . . . , f j) which is a contradiction. We conclude that R is not
Noetherian as it has an infinite ascending chain of ideals.
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Corollary 82 (Hilbert’s basis theorem). For any n ∈N, k[x1, . . . , xn] is Noetherian.

Remark 83. Hilbert’s basis theorem also jus-
tifies the fact that varieties can be defined
by an ideal. Indeed, if I C k[x1, . . . , xn], it
is finitely generated by f1, . . . , fm, then we
define V(I) to be the variety defined by
f1 = · · · = fm = 0, we also say it is the
variety corresponding to the ideal I. One
can verify that V(I(V)) = V is true for any
V, but I(V(I)) = I is not true for any I.Proposition 84. A variety V determines a functor (the functor of points) from V : Algk  

Sets associating L 7→ V(L).

Proof. The action of V on a morphism57 f : L→ M is the natural map 57 Recall that objects in the Algk are k-
algebras and morphisms are ring homo-
morphisms that restrict to the identity on
k.

Ln 3 (a1, . . . , an) 7→ ( f (a1), . . . , f (an)) ∈ Mn.

We first need to verify that if the L.H.S. vanishes on the polynomials defining V,
then the R.H.S. also does. This is easy to see because properties of f are such that
applying a polynomial and then f is the same as applying f and then the polynomial
and f (0) = 0. The remaining functoriality properties obviously hold.

Theorem 85. A functor F : Algk  Sets is representable58 if and only if it arises from 58 We say a functor F : Algk  Sets is
representable if there is a finitely generated
algebra R such that F ∼= HomAlgk

(R,−).
some variety V over k.

Proof. (⇐) Let V be defined by f1 = · · · = fm = 0 and let R = k[x1, . . . , xn]/( f1, . . . , fm).
We claim that V(L) ∼= HomAlgk

(R, L). This is clear because to define a function φ in
the R.H.S., we need to specify where it sends x1, . . . , xn in L such that

fi(φ(x1), . . . , φ(xn)) = φ( fi(x1, . . . , xn)) = φ(0) = 0, ∀i ∈ [m].

This happens precisely when (φ(x1), . . . , φ(xn)) ∈ V(L).
(⇒) Let R be the k-algebra that represents F, then because R is finitely generated,

we can write R = k[x1, . . . , xn]/I, where I is generated by the relations between the
generators of R. Since I is finitely generated,59 we can write I = ( f1, . . . , fm). Then, 59 Because k[x1, . . . , xn] is Noetherian.

as in the converse direction, we have HomAlgk
(R, L) ∼= V(L), where V is the variety

defined by f1 = · · · = fm = 0.

Question 86. To what extent is a variety V (equivalently, I(V) or OV) determined by
V(k)?

It is obviously not completely determined by V(k), for example: let V1 = {x2 + y2 +

1 = 0} and V2 = {x2 + y2 + 2 = 0} with k = R. It is clear that I(V1) 6= I(V2) but both
V1(R) and V2(R) are empty. One might think that this situation gets better when
k is algebraically closed. However, this is still not enough. For instance, if we have
V1 = {x = 0} and V2 = {x2 = 0}, then if L is any field, V1(L) = V2(L) = {0}, but
these varieties have different defining ideals. We will see that looking at more general
algebras will help us greatly towards distinguishing different varieties. Coming back
to the previous example, if we let L = k[ε], ε2 = 060, we see that V1(L) = {(0)} and 60 We can also write

L =

{[
a b
0 a

]
| a, b ∈ k

}
.

V2(L) = {λε | λ ∈ k} are different.
Our next main result is Hilbert’s Nullstellensatz. We will first prove a proposition

that is equivalent to it (sometimes called the field theoretic Nullstellensatz). This
proposition needs two simple but very general lemmas.

Lemma 87. The field of rational functions k(x1, . . . , xn) is not finitely generated as a k-
algebra.
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Proof. Let α1 = p1
q1

, . . . , αt = pt
qt

be a finite collection of elements of this field. We
claim that there is a strict inclusion

k[α1, . . . , αt] ⊂ k(x1, . . . , xn).

Any element of the L.H.S. can be written as p(x)
q

r1
1 ···q

rt
t

, hence if q ∈ k[x1, . . . , xn] is

relatively prime to each qi,61 then 1
q /∈ k[α1, . . . , αn] and the lemma follows. 61 We can always find such q by the CRT.

Lemma 88. Let R be a Noetherian ring, T be a finitely generated R-algebra and S be a
subring of T containing R. If T is finitely generated as an S-module, then S is a finitely
generated as an R-algebra.

Proof. Let w1, . . . , wr be the S-module generators of T and assume62 that this span- 62 We do not loose generality because
any set of R-algebra generators of T can
be extended to be a spanning S-module
generators.

ning set also includes a set of R-algebra generators of T. Then, we can write

wiwj =
r

∑
k=1

a(k)i,j wk, ∀i, j, k ∈ [r], a(k)i,j ∈ S.

Let S′ be the R-algebra generated by all the coefficients a(k)i,j . We have the inclusions
R ⊆ S′ ⊆ S ⊆ T. Since R is Noetherian, then S′ is also Noetherian since it is finitely
generated as an R-algebra. This implies that S, being a submodule of a finitely
generated S′-module (namely T), is finitely generated as an S′-module. We conclude
that S is finitely generated as an R-algebra.63 63 It is generated by the R-algebra genera-

tors of S′ and the S′-module generators of
S.Proposition 89. If L/k is an extension of fields and L is finitely generated as a k-algebra,

then L is algebraic over k.

Proof. From general field theory, we know that there exists x1, . . . , xn ∈ L such that
k(x1, . . . , xn) (we adjoin x1, . . . , xn to k) is purely transcendental and L/k(x1, . . . , xn)

is algebraic.64 Our goal is to show that n = 0, i.e.: there are no transcendental 64 We say that x1, . . . , xn is a transcendental
basis of L and n is the transcendence degree
of L over k.

elements in L.65

65 Why do we know [L : k(x1, . . . , xn)] < ∞?
We can prove this because L is finitely
generated as a k-algebra.

Since L is finitely generated as a module over k(x1, . . . , xn) and as a k-algebra, we
can use lemma 88 to conclude that k(x1, . . . , xn) is finitely generated as a k-algebra,
contradicting lemma 87 if n > 0.

Remark 90. One might think that the proposition follows from the first paragraph
of the previous proof and lemma 87, because k(x1, . . . , xn) is not finitely generated
over k while L is, leading to a contradiction. However, in general, sub-algebras of
finitely generated algebras are not necessarily finitely generated hence the need for
lemma 88.

For example, let k be a field and R be the k-algebra generated by the set {xiyj | i <
j} where x and y are commuting formal variables. It is a subalgebra of k[x, y] which
is finitely generated over k. Suppose that g1, . . . , gt ∈ R and let {v1, . . . , vm} be the
set of degrees of monomials appearing in the generators.66 Now, any degree (i, j) 66 We view the degree of the monomial xiyj

as the tuple (i, j) ∈N2.appearing in a monomial in gd1
1 · · · g

dt
t is a positive linear combinations of v1, . . . , vm.

Since v1, . . . , vm are above the diagonal x = y when seen as points of the lattice N2,
this linear combination is also above the diagonal.
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In fact, letting v1 be the closest (out of v1, . . . , vm) to the diagonal, we see that
the degree (i, j) is above the line going through the origin and v1. However, we can
always find a point below this line and above the diagonal, it represents the degree
of a monomial in R that cannot be generated by this finite set.

Corollary 91 (Hilbert’s Nullstellensatz). If I(V) 6= k[x1, . . . , xn] and k is algebraically
closed, then V(k) is not empty.

Proof. Let M be a maximal ideal containing I(V) and L = k[x1, . . . , xn]/M. Note
that L is a field extension of k. Moreover, it is finitely generated as k-algebra by
{x1 + M, . . . , xn + M}. By proposition 89, L is contained in the algebraic closure of
k, but since k = k̄, they must be equal. Let φ : k[x1, . . . , xn]/M ∼= k and (a1, . . . , an) =

(φ(x1), . . . , φ(xn)) ∈ kn. Since φ is a homomorphism, we have f (a1, . . . , an) = 0 for
all f ∈ M. In particular, this is true for all f ∈ I, thus (a1, . . . , an) belongs to V(k).
As desired, we conclude that V(I)(k) 6= ∅.

Remark 92. We also note that Hilbert’s Nullstellensatz implies proposition 89.

Proof. If L/k is a field extension that is finitely generated as a k-algebra, then L =

k[x1, . . . , xn]/M,67 where M is maximal because L is a field. Let V be the variety 67 M is generated by the relations between
the generators of L.corresponding to M, the Nullstellensatz implies that V(k̄) is non-empty, hence there

exists φ ∈ HomAlgk
(L, k̄), hence L is algebraic.68 68 Any ring homomorphism φ : L → k̄

is injective, so L is a subfield of k̄ and we
conclude any element of L is algebraic over
k.

We will now refine Hilbert’s Nullstellensatz.

Definition 93. Let I C R be an ideal in a ring. The radical of I is the set
√

I := { f ∈ R | ∃m ∈N, f m ∈ I}.

If I =
√

I we say that I is a radical ideal.

Fact 94. R/
√

I has no nilpotent elements69 and
√

I is the smallest ideal containing I with 69 We often called this a reduced algebra.

this property.

Question 95. When is an ideal I C k[x1, . . . , xn] of the form I(V(k̄)) for a variety V?

We will see that the condition that I =
√

I is necessary and sufficient.

Theorem 96. Let I C k[x1, . . . , xn], then I(V(I)(k̄)) =
√

I.

Proof. (⊇) It is clear because if f d ∈ I,then f d ≡ 0 on V(I)(k̄), so f ≡ 0 as well.
(⊆) Let f be in the L.H.S which is generated by f1, . . . , fm ∈ k[x1, . . . , xn] and

consider the ideal J = ( f1, . . . , fm, t f − 1)C k[x1, . . . , xn, t]. Observe that

V(J)(k̄) =
{
(x1, . . . , xn, t) ∈ k̄n+1 | fi(x1, . . . , xn) = 0, ∀i, t f (x1, . . . , xn)− 1 = 0

}
is empty because any points that vanish on f1, . . . , fm also vanish on f , thus we have
f (x1, . . . , xn) = 0 and the last equation cannot be satisfied. Consequently, Hilbert’s
Nullstellensatz implies that J = k[x1, . . . , xn, t], in particular

1 =
m

∑
i=1

ri fi + s(t f − 1), for some ri, s ∈ k[x1, . . . , xn, t]. (∗)
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Consider now a homomorphism φ : k[x1, . . . , xn, t]→ k[x1, . . . , xn][ f−1] with xj 7→ xj,
t 7→ f−1 and φ |k= id. Applying φ to (∗), we get

1 = φ(1) =
m

∑
i=1

φ(ri) fi, φ(ri) =
gi(x1, . . . , xn)

f di
.

Let d be the maximum of the di’s and multiply by f d to obtain

f d = ∑
i

g(x1, . . . , xn) f d−di fi,

so f d ∈ I and f ∈
√

I.

Corollary 97. The maps V 7→ I(V(k̄)) and I 7→ V(I) are mutual inverses70 70 In remark 83, we said that I(V(I)) = I
does not always hold. This corollary states
that it holds if and only if I is radical.{varieties over k} ↔ {radical ideals of k[x1, . . . , xn]}.

To end this section, we will talk about decomposition of varieties in irreducible
components and we will need to take a small detour in topology.71 71 We assume some basic knowledge about

topological spaces.
Definition 98. The Zariski topology on An(k̄) with respect to k is the topology
where the closed sets are the sets of the form V(k̄) for V a variety over k.

Proposition 99. The Zariski topology makes An(k̄) into a topological space, i.e.:

1. ∅ and An(k̄) are closed.

2. If {Vα}α∈A are closed, then
⋂

α∈A Vα is closed.

3. If {Vα}α∈A are closed and A is finite, then
⋃

α∈A Vα is closed.

Proof. 1. The empty set is always the variety defined by 1 = 0. The whole space is
the variety defined by 0 = 0.

2. Let Fα = I(Vα) and F = ∑α∈A Fα, F is an ideal that is finitely generated by some
polynomials f1, . . . , fm and it is clear that the variety they define is the intersection
of all the Vα’s.

3. Let Fα = I(Vα) and F = ∏α∈A Fα
72, F is an ideal that is finitely generated by some 72 While arbitrary sum of ideals is well

defined. Products are only well defined
when A is finite.

polynomials f1, . . . , fm and it is clear that the variety they define is the union of
all the Vα’s.

Definition 100. A topological space X is irreducible if for any decomposition X =

A1 ∪ A2 where A1 and A2 are closed, A1 = X or A2 = X.73 73 Same for open or closed.

Remark 101. Observe that this definition applied to the Zariski topology coincides
with the definition of irreducibility of varieties.

Lemma 102. The following properties of a topological space X are equivalent:

(i) X is irreducible.
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(ii) If U1 and U2 are open non-empty subsets of X, then U1 ∩U2 6= ∅.

(iii) Any non-empty open subset of X is dense in X.

Proof. (i⇔ ii) The contrapositive of this equivalence follows from DeMorgan’s laws,
namely, let U1 and U2 be subsets of X and V1 = X−U1 and V2 = X−U2, then

∅ 6= U1, U2 are open and U1 ∩U2 = ∅⇔ X 6= V1, V2 are closed and V1 ∪V2 = X.

(ii⇔ iii) Again, we show the contrapositive. If U is a non-empty open subset of X,
then

∃∅ 6= V open, U ∩V = ∅⇔ ∃x ∈ X−U, ∃V open, U ∩V = ∅⇔ U is not dense.

Corollary 103. If S ⊆ X is irreducible, then so is S (its closure in the topology).

Definition 104. An irreducible component of X is a maximal irreducible subset.

Corollary 105. The irreducible components of X are closed.

Proposition 106. Let X be a topological space, then we have

(i) Any irreducible subset of X is contained in an irreducible component.

(ii) X is the union of its irreducible components.

Proof. (i) Follows from Zorn’s lemma. Let S ⊆ X be irreducible and M be the
set of all irreducible subsets of X containing S. If {Si ∈ M}i∈I is a chain of
inclusions, then let Y = ∪i∈ISi. We claim that Y is also in M, implying the
chain has an upper bound.

It is obvious that Y contains S. To see that Y is irreducible, observe that any two
open sets U1 and U2 that intersect Y non-trivially must intersect some element
S0 of the chain non-trivially.74 Thus, we have 74 U1 intersects some S1 and U2 intersects

som S2, since one of the Si must be con-
tained in the other (they are in a chain), we
can let S0 be the bigger one.

∅ 6= U1 ∩U2 ∩ S0 ⊆ U1 ∩U2 ∩Y,

and, by lemma 102 part (ii), Y is also irreducible.

The maximal element of M is an irreducible component of X containing S.

(ii) Follows from a): the union of the irreducible components of X is the same as
the union of the irreducible components containing x ∈ X (they exist because
x is irreducible) which clearly yields the whole space.

Definition 107. A topological space X where every descending chain of closed sets
stabilizes is said to be Noetherian.

Example 108. Consider An(k) with the
Zariski topology, a descending chain
of closed sets is a descending chain of
varieties which in turn corresponds to an
ascending chain of ideals of k[x1, . . . , xn].
Since k[x1, . . . , xn] is Noetherian, these
chains must stabilize and we conclude that
An(k) is Noetherian. Moreover if V is a
variety, V(k̄) with the induced topology is
also Noetherian.

Proposition 109. A Noetherian topological space has finitely many components. Moreover,
no component is contained in the union of the others.
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Proof. Let M be the set of closed subsets of X that are not equal to a finite union
of irreducible subsets. Suppose M 6= ∅ and let Y be a minimal element75. It is not 75 It exists because X is Noetherian.

irreducible76, hence Y = Y1 ∪Y2, where Y1 and Y2 are closed. By minimality of Y, Y1
76 Otherwise it would be a finite union of
irreducible subsets (namely, just Y) and it
wouldn’t be in M.

and Y2 cannot be in M. Thus, each of Y1 and Y2 can be written as a finite union of
irreducible components and it follows that Y can also be written as a finite union of
irreducible components. This contradicts the fact that Y ∈ M.

In particular, we obtain X = ∪n
i=1Xi, where Xi are distinct irreducible compo-

nents.77 Suppose Y is an irreducible component of X, then Y = ∪n
i=1Y ∩ Xi and 77 The first part only yields a finite union

of irreducible subsets X′i , but in the decom-
position of the whole space, we can take
the irreducible components that contain
the X′i ’s and call them Xi and get rid of
duplicates.

by irreducibility, we can assume Y = Y ∩ X1, namely Y = X1. This shows that all
irreducible components are in the Xi’s, so there are finitely many.

For the second part of the proposition, assume towards a contradiction that Xi ⊆
∪i 6=jXi, then intersecting with Xi and using irreducibility of Xi yields Xi = Xi ∩ Xj

for some j 6= i, which means Xi and Xj are not distinct.

Corollary 110. 78 If I C k[x1, . . . , xn], then there are only finitely many minimal prime 78 This result can be seen as a ring-theoretic
version of proposition 109.ideals that contain I and they are called the associated primes of I. Moreover, if I is radical,

then I = p1 ∩ · · · ∩ pr, where the pi’s are its associated primes.

Proof.

Projective varieties

It is useful to consider more general classes of varieties obtained by "gluing together"
affine varieties. This section is concerned by such objects, which we call projective
varieties. They are defined on the projective space.

Definition 111. The n-dimensional projective space Pn(k) is the set of all lines in
kn+1 that go through the origin. It can be described as (kn+1 − 0)/ ∼ where the ∼
is the following relation79 79 We denote the tuples with colons to

distinguish these from the usual tuples of
affine spaces. This relation says that two
elements are equal if one of them is the
scaled version of the other. It is clear that all
points on the same line going through the
origin are equal, hence the first sentence of
this definition.

(x0 : x1 : · · · : xn) ∼ (y0 : y1 : · · · : yn)⇔ ∃λ ∈ k×, ∀0 ≤ i ≤ n, λxi = yi.

We can also see Pn as the functor Fieldsk → Sets sending a field L > k to the set

(Ln+1 − 0)/ ∼ .

One often writes Pn for Pn even though Pn 6= (P1)
n in general.

Lemma 112 (Hilbert’s Satz 90). Let k be a field. If λ : Gal(k̄/k) → k̄× is a continuous
crossed homomorphism 80, then there exits a ∈ k̄ such that for any σ ∈ Gal(k̄/k), λσ = a

σ(a) . 80 Let G and H be groups with an action
∗ of G on H. A map φ : G → H is
said to be a crossed homomorphism
if it is a homomorphism that satisfies
φ(g1g2) = φ(g1)(g1 ∗ φ(g2)) for any
g1, g2 ∈ G. Furthermore, we say that it is
continuous if ??? λ : Gal(L/k)→ L×

Proof. To be seen later in

Proposition 113. Let k be a field, then

{x ∈ Pn(k̄) | ∀σ ∈ Gal(k̄/k), σ(x) = x} =: Pn(k̄)Gal(k̄/k) = Pn(k).

Proof. It is clear that Pn(k) maps injectively into Pn(k̄)Gal(k̄/k) with the inclusion
map.81 Moreover, for any (a0 : · · · : an) ∈ Pn(k̄)Gal(k̄/k) and any σ ∈ Gal(k̄/k), we 81 Any element (x0 : · · · : xn) ∈ Pn(k) will

be invariant under Gal(k̄/k) because each
coordinate is invariant.
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know that (σa0 : · · · : σan) = (a0 : · · · : an), or equivalently, there is λσ ∈ k̄× such
that (σa0 : · · · : σan) = λσ(a0 : · · · : an). We obtain a map λ : Gal(k̄/k)→ k̄× = σ 7→
λσ.82 82 It measures the obstruction to (a0 : · · · :

an) being defined over k.Observe that λ is a crossed homomorphism because if σ, τ ∈ Gal(k̄/k), then
λστ = λσσ(λτ). Then, by Hilbert’s Satz 90, we obtain some a ∈ k× such that

∀σ ∈ Gal(k̄/k), σ(a0 : · · · : an) =
a

σ(a)
(a0 : · · · : an),

so σ(aa0 : · · · : aan) = (aa0 : · · · : aan). We found elements of aaj ∈ k̄ that are
invariant under automorphisms of Gal(k̄/k), this means that they belong to k and
we conclude that (a0 : · · · : an) is the image of (aa0 : · · · : aan) ∈ Pn(k), yielding
surjectivity of the inclusion map.

Remark 114. The ring of polynomial functions on Pn is poor. If f (x0, . . . , xn) gives
rise to a function on Pn, then it would have to be invariant under scaling, i.e.:
f (λx0, . . . , λxn) = f (x0, . . . , xn), but when k is infinite, this only happens when f
is constant.83 Although f (a0 : · · · : an) is not well-defined when deg( f ) > 0, if 83 Decompose f into its homogeneous

components fd of degree d and fix x ∈ kn+1.
Then, for all λ ∈ k×, we have

deg( f )

∑
d=0

fd(x) = λ f (x) = f (x) =
deg( f )

∑
d=0

λd fd(x)

This is satisfied for infinitely many λ’s if
and only if f is constant.

f is homogeneous of non-zero degree, then f (a0 : · · · : an) = 0 is a well-defined
conditions for (a0 : · · · : an) ∈ Pn. This is because f (x) = 0 implies f (λx) =

λd f (x) = 0.

Definition 115. A k-projective variety V in Pn is the zero locus of a finite system
of homogeneous polynomials in k[x1, . . . , xn] :

F1(x0 : · · · : xn) = · · · Fm(x0 : · · · : xn) = 0.

We can view V as a functor

Fieldsk  Sets = L 7→ V(L) = {x ∈ Pn(L) | ∀i ∈ [m], Fi(x) = 0}.

Remark 116. The main justification for working with projective varieties is that the
intersection theory is much nicer as we will show.

Example 117. In P2 (the projective plane), lines corresponds to the solutions of a
homogeneous polynomial of degree one (ax0 + bx1 + cx2 = 0). Considering the
natural map A3 \ {0} → P2, we see that any lines in P2 is the image of a plane in
A3 through the origin. We can conclude that the fact that any two such planes in
A3 intersect only at a common line is equivalent to the fact that any two lines in P2

intersect in a common point.

Definition 118. We say that a variety in Pn is linear if it is defined by a collection
of linear equations 84. If the set of solutions in An+1 is a vector space of dimension 84 Systems of the form Ax = 0 for A ∈

Mm×n(k).d + 1, then d is the dimension of the linear variety.

Definition 119. A hypersurface of degree d > 0 is a variety defined by a single
polynomial equation of degree d. The terms linear hypersurface (or hyperplane) and
quadric hypersurfaces are used to describe hypersurfaces of degree one and two
respectively.
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Proposition 120. Let k be algebraically closed, V be a linear variety in Pn(k) of dimension
d ≥ 1 and S be a hypersurface. Then, V and S have a non-empty intersection.85 85 More intuitively, this result says that

any two spaces of co-dimension one and
dimension one respectively will intersect.
This is clearly not the case in An, for
instance, take two parallel lines in A2.

Proof. We can assume without loss of generality that the dimension of the linear
variety is 1 (otherwise take a line inside it) and that V is given by the equation x2 =

x3 = · · · = xn = 0. Indeed, we can always rotate the whole space so that V becomes
this linear variety. More generally, the group of symmetries of Pn is GLn+1(k), so
we can perform lots of transformations while keeping the same structure.

Let S be given by F(x0 : · · · : xn) = 0. S ∩ L is given by the equations F(x0 : x1 :
0 : · · · : 0) = 0 which is still homogeneous because all terms with x2, . . . xn are killed.
This clearly still has zeros (when one of x0 and x1 are zero)86, so we are done. 86 Notice that F(· : · : 0 : · · · : 0) cannot

be constant unless it is zero, otherwise
F would have had a non-zero constant
coefficient.

Proposition 121. If n > 1, then any two hypersurfaces in Pn have non trivial intersection
over k̄.

Proof. Let V1 defined by F(x0 : · · · : xn) = 0 and V2 defined by G(x0 : · · · : xn) = 0
be the two hypersurfaces, we will show that V1(k̄) ∩V2(k̄) 6= ∅.

Assume without loss of generality that the point (0 : · · · : 0 : 1) lies neither on
V1(k̄) nor V2(k̄)87. This implies that F has xd1

n as a monomial and G has xd2
n , where 87 We can always do that by using the

numerous symmetries of Pn(k̄), we just
need at least one point in k̄n+1 that does not
vanish on either of F and G. If it does not
exist, then (F, G) = k̄[x0, . . . , xn], but if two
homogeneous polynomials generate 1, then
one of them must be constant, a case that is
not allowed for hypersurfaces.

d1 and d2 are the degrees of F and G respectively. Moreover, we can also assume
that V1 and V2 are both irreducible (otherwise we replace them by the irreducible
component that contains them) and that neither is contained in the other (otherwise
the result is trivial).

Now, we can view F and G as elements of k(x0, . . . , xn−1)[xn] that are relatively
prime in this ring, by our previous assumptions. Thus, we obtain

∃A, B ∈ k[x0, . . . , xn], ∃N ∈ k[x0, . . . , xn−1],
A
N

F +
B
N

G = 1⇔ AF + BG = N,

where A
N and B

N are in lowest terms. Observe that for any irreducible factor φ of N,
if φ | A, then φ | BG, but as G is irreducible, we get φ | B, implying the fractions are
not in lowest terms. Similarly, we can show that if φ | B, then φ | A which leads to
the same contradiction. Hence, φ divides neither A nor B. Moreover, after dividing
A by G, we can assume degxn

(A) < degxn
(G).88 88 The Euclidean algorithm in

k[x0, . . . , xn−1][xn] yields A = GQ + A′

with degxn
(A′) < degxn

(G), so we have

(GQ+ A′)F+ BG = N or A′F+(B+ FQ) = N.

Let ϕ be an irreducible divisor of N, we know that V((ϕ)) * V(A) and V((ϕ)) *
V(B), so we can find (a0, . . . , an−1) ∈ k̄n such that ϕ(a0, . . . , an−1) = 0 and

A(a0, . . . , an−1, xn), B(a0, . . . , an−1, xn) 6= 0.

Therefore, if we partially evaluate both sides of AF + BG = N at (a0, . . . , an−1), we
obtain89 89 It is important to note that both sides

are non-zero because both F and G
have a monomial involving only xn and
(a0, . . . , an−1) was constructed so that the
partial evaluation of A and B are non-zero
as well.

A(a0, . . . , an−1, xn)F(a0, . . . , an−1, xn) = −B(a0, . . . , an−1, xn)G(a0, . . . , an−1, xn),

and since degxn
(A) < degxn

(G), there exists a factor (xn − an) of F(a0, . . . , an−1, xn)

that also divides G(a0, . . . , an−1, xn). We conclude that (a0, . . . , an) ∈ V1 ∩V2.

Our main result in this section is the analog of the decomposition of affine vari-
eties into irreducible for their projective counterpart. We will start with a bit more
generality.
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Definition 122. A ring R is said to be graded if it is isomorphic (as an additive
group) to ⊕d∈NRd and if for any d1, d2 ∈ N, Rd1 Rd2 ⊆ Rd1d2 . We denote πd to be
the projection of R onto its d-th coordinate.

Example 123. The ring R = k[x0, . . . , xn]
has the natural grading

R =
⊕
d∈N

Rd,

where Rd is the group of homogeneous
polynomials of degree d. It is clear that
Rd1 Rd2 ⊆ Rd1d2 . Moreover, the projection
πd collects all the monomials of degree d of
its argument.

Definition 124. An ideal in a graded ring is said to be homogeneous if it is generated
by homogeneous elements (i.e.: elements of Rd for some d ∈N).

Theorem 125. Let R = ⊕d∈NRd be a graded ring and I C R, the following are equivalent:

1. I is homogeneous.

2. If f ∈ I, then all of its homogeneous components lie in I.

3. R/I is also a graded ring and R/I = ⊕d∈N(Rd + I)/I.

Proof. Write I = ( f1, . . . , ft) where each fi is homogeneous in Rdi
.

(1 =⇒ 2) If f ∈ I, then for some λi ∈ R, we can write

f = λ1 f1 + · · ·+ λt ft,

which implies that for any d ∈N,

πd( f ) = πd−d1(λ1) f1 + · · ·+ πd−dt(λt) ft ∈ I.

(2 =⇒ 1) Write I = ( f1, . . . , ft) where the fi’s are not a priori homogeneous. If we
let D be the highest degree of a monomial of an fi, we obtain I = (π1 f1, . . . , πD ft).90 90 This holds because all homogeneous

components of polynomials in I are in I
and I is generated by the homogeneous
components of its polynomials.

(2 =⇒ 3) Clearly, we already have R/I = ∑d∈N(Rd + I)/I. It remains to show
that this is in fact a direct sum. If 0 = ∑m

d=0 λd where λd ∈ (Rd + I)/I, then, letting
λ̃d be a preimage of λd from the quotient map, this means ∑m

d=0 λ̃d ∈ I. However,
this can only happen if each λ̃d is in I,91 so for each d, λd = 0. This shows we indeed 91 If λ̃d = r + i ∈ Rd + I, then ∑m

d=0 λ̃d −
i is in I but has r as its homogeneous
component, so r ∈ I and λ̃d ∈ I.

have a direct sum.
(3 =⇒ 2) Is similar.

Definition 126. A projective variety V ⊆ Pn naturally gives rise to an affine variety
Ṽ ⊆ An+1 (by forgetting the quotient).92 It is called the affine cone attached to V. 92

This can be seen as the union of lines that are in the variety seen in the affine space.

Proposition 127 (Projective Nullstellensatz). Let k be algebraically closed, the assignment
V 7→ I(V(k)) gives a bijection93 93 Note that the empty variety is is mapped

to (x0, . . . , xn) because 0 is not considered
in the projective variety.{projective varieties over k} ↔ {homogeneous radical ideals in k[x0, . . . , xn]}.

Corollary 128. A system of homogeneous polynomial equations F1 = · · · Ft = 0 has no
solutions over an algebraically closed k if and only if

√
(F1, . . . , Ft) = (x0, . . . , xn).

Remark 129. We can decompose the projective space as Pn = Σ0 q · · · q Σn, where
Σj = {(x0 : · · · : xn) | xj 6= 0}. Observe that we have the bijection Σj

∼= An:

(x0 : · · · : xn) 7→ (x0/xj, . . . , xj−1/xj, xj+1/xj, . . . , xn/xj),

and that clearly Pn − Σj = Pn−1, so Pn = An qPn−1.94 Moreover, for a projective 94 Another way to view the projective space
is as a compactification of the affine space
and this decomposition illustrates this idea.
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variety V in Pn, we can write V = V0 ∪ · · · ∪Vn, where Vj = V ∩ Σj. To obtain the
equations that define Vj, replace xj by 1 in each Fi. This operation does not preserve
homogeneity of the Fi’s, but still we get the affine variety Vj.

Conversely, if V0 ⊆ An is an affine variety defined by F1 = · · · = Ft = 0. We claim
that there exists V ⊆ Pn such that V0 = V ∩ Σ0.95 Let Di be the maximum degree of 95 This is called the projective closure of V.

a monomial in one of the Fi’s, then define

F′i =
Di

∑
d=0

xDi−d
0 πd(Fi).

F′i is called the homogeneous completion of Fi by x0 and one can verify that the F′i ’s
define the suitable variety V.

Recall that for affine varieties, their decomposition into a finite union of irre-
ducible components V = V1 ∪ · · · ∪Vs translated to the ring-theoretic fact that any
radical ideal is the intersection of a finite collection of minimal prime ideals contain-
ing I. We now want to talk about decomposition but for projective varieties and we
will work in the opposite direction, namely, from a ring-theoretic argument to the
geometric result).

Lemma 130. If p is a prime ideal of a graded ring R, and p∗ is the ideal generated by the
homogeneous elements of p, then p∗ is also a prime ideal.96 96 Geometrically, p corresponds to a variety

and p∗ to the affine cone generated by this
variety.Proof. Suppose there exists a, b /∈ p∗ such that ab ∈ p∗ for a d ∈N sufficiently large,

write
a = π0(a) + · · ·+ πd(a) and b = π0(b) + · · ·+ πd(b).

Let i and j be the greatest integers such that πi(a) /∈ p∗ and πj(b) /∈ p∗, namely, we
have πi+t(a), πj+t(b) ∈ p∗ for all t > 0.97 97 These indices exist because a, b /∈ p∗.

By construction, p∗ is a homogeneous ideal, so for each k, πk(ab) ∈ p∗ (by theorem
125). Then, we have

πi+j(ab) = πi(a)πj(b) +
j

∑
t=−i

πi+t(a)πj−t(b),

and since the L.H.S. is in p∗ and every element of the sum is in p∗ (by maximality
of i and j), we infer that πi(a)πj(b) ∈ p∗. Therefore, πi(a)πj(b) is also in p and by
primality either πi(a) ∈ p or πj(b) ∈ p, so either π(a)i ∈ p∗ or πj(b) ∈ p∗ (because
they are homogeneous).

Proposition 131. Let R = ⊕j∈NRj be a graded ring and I C R be homogeneous. Then, all
minimal prime divisors98 of I are homogeneous. 98 In the sense that it contains no other

prime divisor of I.
Lem implies prop. If p ⊇ I is a minimal prime, then, since I is homogeneous, it is
generated by some homogeneous elements of p. Thus,we have p ⊇ p∗ ⊇ I and by
the previous lemma p∗ is prime, so p = p∗ by minimality. We conclude that p is also
homogeneous.

Remark 132. The minimality condition is
a key condition. Geometrically, consider
the usual ring k[x0, . . . , xn] and an affine
cone Ṽ ⊆ An, we see that every irreducible
subset of an affine cone is not necessarily
affine cones.

Corollary 133. Every irreducible component of an affine cone is an affine cone and every
irreducible component of a projective variety is a projective variety.
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Introduction to Spec and Schemes

The motivation for this section is that the mapping from an ideal I C k[x1, . . . , xn]

to V(I) does not carry all the information. Recall that if the radical of I1 is equal to
the radical to I2, then V(I1) = V(I2). More precisely, we are forgetting about some
quotients that contain nilpotent elements, but these are important. This section is
aimed at positively answering the following:

Question 134. Is there a geometric object corresponding to general ideals of k[x1, . . . , xn]?

We will indeed see that non-radical ideals have a geometric meaning, as informally
shown by these simple examples.

Examples 135.

1. Consider I = (x2)C k[x], we know
√

I = (x) and V(I) = {(0)} in every affine
space over an extension of k. We also have the notion of the coordinate ring OV(I)
which is k[x]/(x) = k. If we "redefine" a new object Ṽ such that its coordinate ring
of is OṼ(I) = k[x]/(x2). Recall that f vanishes on V(I) if and only if f = 0 ∈ OV ,

so we analogously define that f vanishes on Ṽ(I) if and only if f = 0 ∈ OṼ(I).
The former holds if and only f (0) = 0 while the latter holds if and only if
f (0) = f ′(0) = 0, we have recovered the lost information.99 99 Geometrically, we can think of the points

of Ṽ(I) as thickened points with tangent
vectors associated.2. Consider I = (x2, xy, y2) C k[x, y]. Then, V(I) still only contain the origin in

any affine space. However, in Ṽ(I), we have a thickened origin with vectors
representing each first order partial derivative.

3. The "double line": Let I = (x2)C k[x, y], we have OṼ(I) = k[x, y]/(x2) = k[y]⊕
k[y]x with x2 = 0. Also, we can write f (x, y) in OṼ(I) as f (0, y) + ∂

∂x f (0, y)x.

The formalization of these examples will use the notion of spectrum of rings.

Definition 136. The spectrum of a ring R is Spec(R) := {pC R | p is prime}.

Proposition 137. Denote V(I) := {p ∈ Spec(R) | I ⊆ p}100, then the collection of closed 100 When I is principal, say generated by p,
we also write V(p) for simplicity.sets {V(I) | I C R} defines a topology on Spec(R), we refer to it as the Zariski topology.

Proof. 1. We have ∅ = V(R) and Spec(R) = V(0), so both sets are closed.

2. If {Iα}α∈A is a collection of prime ideals, then it is clear that⋂
α∈A

V(Iα) = {p ∈ Spec(R) | ∀α ∈ A, p ⊇ Iα}

= {p ∈ Spec(R) | p ⊇ ∑
α∈A

Iα} = V

(
∑

α∈A
Iα

)
.

3. If I1 and I2 are prime ideals, then we claim that101 101 The reasoning will work for any finite
collection of ideals (or one could use
induction), but it is not valid for infinite
collections because it would require taking
an infinite product.

V(I1) ∪V(I2) = {p ∈ Spec(R) | p ⊇ I1 or p ⊇ I2} = {p ∈ Spec(R) | p ⊇ I1 ∩ I2}.
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The ⊆ inclusion is clear. For ⊇, assume that p ⊇ I1 ∩ I2 does not contain I1 nor I2,
then there exists a1 ∈ I1 − p and a2 ∈ I2 − p. However, this yields a1a2 ∈ I1 ∩ I2 ⊆
p, which contradicts the primeness of p.

Examples 138. 1. The spectrum of Z consists of the zero ideal and all the ideals
generated by primes p. The closed sets are V(n) = {(p) | p is a prime factor of n},
if n 6= 0 and V(0) = Spec(Z).

2. The spectrum of k[x] consists of the zero ideal and the ideals generated by irre-
ducible polynomials. If k is algebraically closed, then A1(k) is in bijection with
Spec(R)− {(0)} by sending a to (x− a).102 Otherwise, Spec(k[x]) contains many 102 In fact, this map is a homeomorphism

with respect to the Zariski topology. In-
deed, the inverse image of V(I) is precisely
the variety defined by I (hence the nota-
tion), while the image of a variety X is
V(I(X)).

more points.

3. The spectrum of k[x, y] is quite more complicated even when k is algebraically
closed, i.e.: the inclusion A2(k) ↪→ Spec(k[x, y]) = (a, b) 7→ (x− a, y− b) is not a
bijection. This happens because f (x, y) can be irreducible without being in this
kind of ideal. For such an f , the closure of {( f )} is {( f ), 0} ∪ {(x − a, y − b) |
f (a, b) = 0}.

Definition 139. Given A ⊆ Spec(R), the vanishing ideal of A is I(A) := ∩p∈Ap.

Proposition 140. If A ⊆ Spec(R), then V(I(A)) = A (the closure of A).

Proof. Clearly A ⊆ V(I(A)) and V(I(A)) is closed, thus A ⊆ V(I(A)). Conversely,
if V(I) contains A, then for all p ∈ A, p ⊇ I, implying I ⊆ ∩p∈A = I(A). We obtain
that V(I(A)) ⊆ V(I)103 and we conclude that V(I(A)) is the smallest closed set 103 It is true in general that I ⊆ J implies

V(J) ⊆ V(I).containing A, namely that V(I(A)) = A.

Lemma 141 (Krull). Let S be a multiplicative subset of R not containing 0. If I is an ideal
of R that trivially intersects S, then there exists a prime p ⊇ I such that p ∩ S = ∅ as
well.104 104 Note that Krull’s lemma implies the fact

that every ideal is contained in a maximal
ideal, taking S = {1}.Proof. Let M be the collection of ideals J ⊇ I such that J ∩ S = ∅. We know that M

is not empty because it contains I and that it satisfies the maximal chain condition,
because if {Jα}α∈A is a chain in M, then ∪α∈A Jα is clearly in M and is an upper
bound. Thus, by Zorn’s lemma, M contains a maximal element p.

We claim that p is prime. Assume towards a contradiction that a, b /∈ p and ab ∈ p,
then both p+ (a) and p+ (b) are strictly greater than p, so they must intersect with
S (by maximality of p). Then, we can find p1, p2 ∈ p and r1, r2 ∈ R such that p1 + r1a
and p2 + r2b are both in S, hence, so is their product p1 p2 + p2r1a + p1r2b + r1r2ab.
However, we see that each term in this sum is in p, so this contradicts p∩ S = ∅.

Corollary 142. 105 105 The second part can be seen as a Null-
stellensatz and works for more general
polynomial rings. The traditional approach
in algebraic geometry was to work over
k̄, so the old Nullstellensatz was enough.
In the modern approach, one replaces
V(I) ⊆ An(k) by Spec(k[x1, . . . , xn]/I),
hence the need for this more general
statement.

1. ∩p∈Spec(R) =
√

0, namely the intersection of the prime ideals is precisely the nilpotent
elements.

2. For any ideal I C R, ∩p∈V(I) =
√

I.
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Proof.

1. It is clear that
√
(0) ⊆ ∩p∈Spec(R).

106 106 Any ideal contains 0, thus if xm = 0 for
some m, then xm ∈ p which implies x ∈ p

by primeness.For the other inclusion, suppose that x is not nilpotent, then let S = {xm | m ∈N},
it does not contain 0, so we can use Krull’s lemma with I = (0) to conclude that
there is a prime ideal with x /∈ p.

2. This is a simple application of the first part to the quotient ring R/I.107 107 By the fourth isomorphism theorem,
V(I) in R is in correspondence with
V(0) in R/I. Moreover, the preimage of
nilpotent elements in R/I is precisely

√
I.

We conclude with the fact that the preimage
of ∩p∈V(I)p is ∩p∈V(I)p.

Theorem 143. Any ring homomorphism ϕ : R→ S induces a continuous map

ϕ∗ : Spec(S)→ Spec(R) = p 7→ ϕ−1(p).

Proof. If pC S is prime, then it is trivial to show that ϕ∗(p) is an ideal of R, to see it
is prime, note that R/ϕ−1(p) ∼= ϕ(R)/p ⊆ S/p.108 108 Since the R.H.S. is an integral domain

(by primality), so is the L.H.S. and we
conclude that ϕ∗(p) is prime.

The continuity of ϕ∗ follows from the following derivation (for any ideal I C R):

(ϕ∗)−1(V(I)) = (ϕ∗)−1{p ∈ Spec(R) | p ⊇ I}
= {p ∈ Spec(S) | ϕ−1(p) ⊇ I}
= {p ∈ Spec(S) | p ⊇ ϕ(I)}
= V(ϕ(I)).

Moreover, it is clear that ϕ∗ψ∗ = (ψϕ)∗ and id∗ = id, so we conclude that the maps
R 7→ Spec(R) and ϕ 7→ ϕ∗ form a contravariant functor Rings Top.109 109 The objects of Top are topological spaces

and morphisms are continuous maps.
Remark 144. This functor is not injective on objects. For instance, if R is a ring and
I =
√

0, then the continuous map Spec(R/I) → Spec(R) induced by the quotient
map is a homeomorphism. Hence, we can’t distinguish between the two spaces and
we lost the information about the nilpotent elements.

The notion of scheme which we will cover next will add extra structure on Spec(R)
in order to regain this information. The basic principle is that an element f ∈ R can
be viewed as a "function" on Spec(R), with f (p) being the image of f in R/p. Note
that the codomain of f depends on the argument, so it is not truly a function. What
is more, f need not be determined by its values, namely, if f is a nilpotent element of
R, then ∀p ∈ Spec(R), f (p) = 0,110 but we do not want to think of f as 0 (otherwise, 110 Recall that nilpotent elements are in the

intersection of the prime ideals by corollary
142.

we would not have gained any information).
We start developing the formal concepts.

Definition 145. A sheaf of rings (we will often simply say sheaf) on a topological
space X is a contravariant functor OX : T(X)  Rings111 with two additional 111 The category T(X) has all the open sets

of X as its objects and the morphisms can
be described for any open sets U, V as

Hom(U, V) =

{
iU,V U ⊆ V
∅ o/w

.

properties listed below.
Unpacked, this definition says that for each open U ⊆ X, we have a ring OX(U)

and for each inclusion of open sets U ⊆ V, then we have a ring homomorphisms112

112 They are called the restriction maps.
And we use them with the suffix notation,
namely |VU ( f ) = f |VU .

|VU : OX(V)→ OX(U) satisfying the following properties:

1. For any open set U, |UU is the identity on OX(U).
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2. For any open sets U ⊆ V ⊆W, |WU =|VU ◦ |WV .

3. For any open cover {Uα} of an open set U, if f ∈ OX(U) is such that ∀α, f |UUα
= 0,

then f = 0.

4. For any open cover {Uα} of an open set U and any collection { fα ∈ OX(Uα)}
such that

∀α, β, fα |Uα
Uα∩Uβ

= fβ |
Uβ

Uα∩Uβ
,

there is an element f ∈ OX(U) with fα = f |UUα
for all α’s.113 113 The last two properties are not part of

the functoriality of OX . Informally, they
describe the locality of the sheaf, namely,
the first one says that if f is locally zero,
then it zero and the second one says that
local data can be glued together.

Remark 146. One can infer from the third property that the restriction maps are
always injective and we will see later that it follows from the fourth that OX is
determined by where it sends an open basis of X. Moreover, we can use the third
property to see that the glued data f in the fourth property is unique. In fact, one
can also define sheaves by requiring that the glued data is unique and dropping the
third property.

Definition 147. The sheaves on X form a category where if OX and O′X are sheaves
on X, then a morphism π : OX → O′X is a natural transformation between the
two functors. Explicitly, it associates to any open set U, a homomorphism πU :
OX(U) → O′X(U) such that for any U ⊆ V, the following diagram commutes,
where the restriction maps are coming from the appropriate functors.

OX(V) O′X(V)

OX(U) O′X(U)

|VU

πV

|VU
πU

Definition 148. Let X = Spec(R), for any f ∈ R, we define U f = {p ∈ Spec(R) |
f (p) 6= 0}, equivalently p ∈ U f if and only if f /∈ p. We call these sets distinguished
open sets.

Proposition 149. The collection of distinguished open sets is a basis for X for the Zariski
topology on Spec(R).

Definition 150. The structure sheaf on Spec(R) is defined by OX(U f ) = R[ f−1].114 114 The intuition for this definition is that
for any g ∈ R[ f−1] and p ∈ U f , g (mod p)
is well-defined. Note that f cannot be
nilpotent for R[ f−1] to be well defined, but
if it is, then U f is empty, so OX(U f ) need
not be defined.

With the same intuition, we can see that OX(U f ∩Ug) = R[ f−1, g−1]. Moreover,
by injectivity, we get that OX(U f ∪ Ug) is a subring of OX(U f ) × OX(Ug). More
precisely, since both projections need to restrict to the same thing on OX(U f ∩Ug),
we have

OX(U f ∪Ug) = {(α f , αg) | the images of α f and αg in R[ f−1, g−1] are the same}.

This is a fiber product and is denoted R[ f−1]×R[ f−1,g−1] R[g−1].

Fact 151. The restriction maps are well-defined, i.e.: if Ug ⊆ U f , then R[ f−1] ⊆ R[g−1].
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Proof. Taking the complements, we see that

Ug ⊆ U f ⇔ {p ∈ Spec(R) | g ∈ p} ⊇ {p ∈ Spec(R) | f ∈ p}.

Thus, intersecting the primes in the two sets on the R.H.S., we obtain by corollary 142,√
(g) ⊆

√
( f ). In particular, there exists n > 0 such that gn = f h, or equivalently,

f−1 = hg−n, so R[ f−1] ⊆ R[g−1].

Examples 152. 1. The spectrum of a field is a single point ∗ and the structure sheaf
assigns the whole field to {∗}.

2. Let k be a field and R = k[ε]/(ε2), then Spec(R) = {∗}, so it has the same
topological space as the first example. However, the structure sheaf is different
since it assigns k[ε] to {∗}. We see that the "functions" we obtain have more
structure, namely, they can be "evaluated" and "differentiated" once.

3. Recall that Spec(Z) = {p | p is prime}∪{∗}. For f ∈ Z, we have U f = {p prime |
p - f } and OX(U f ) = Z[ f−1].

Definition 153. Let OX be a sheaf of rings on X and x ∈ X. Then, the stalk of OX

at X is115 115 The last two equalities hold when
X = Spec(R). If x corresponds to a prime
ideal pC R (when X = Spec(R)), then OX,x
corresponds to the localization of R at p.

OX,x = lim−→
U⊆X,x∈U

OX(U) =
⋃

U f3x
OX(U f ) =

⋃
f∈R, f /∈x

R[ f−1].

Definition 154. A morphism of affine schemes π : (X,OX) → (Y,OY) is a contin-
uous map π : X → Y along with a morphism of sheaves π# : OY → π∗OX , where
π∗OX is the pushforward of the structure sheaf on x, i.e.: π∗OX(U) = OY(π

−1(U)).

Proposition 155. Every morphism π : (Spec(S),OY) → (Spec(R),OX) is completely
determined by the associated map π# : OX(X)→ OY(Y) = π∗OY(X) = R→ S.

Corollary 156. The functor Spec : Rings  Schemes is an anti-equivalence of cate-
gories.116 116 In other words, Spec induces a bijec-

tion between the objects of the cate-
gories and bijections between the ap-
propriate Hom sets, i.e.: for any R, S,
HomSchemes(Spec(S), Spec(R)) ∼=
HomRings(R, S).

The passage from R to (Spec(R),OX) interprets morphisms of rings geometrically.
If S is a multiplicative set generated by some f ∈ R not nilpotent. Then, the inclusion
R ↪→ R[ f−1] induces the morphism Spec(R[ f−1]) ↪→ Spec(R). This map is called
an open embedding or open inversion. If I C R, then the quotient map R → R/I
induces Spec(R/I)→ Spec(R). This map is a closed embedding of V(I) in Spec(R).

Everything here is fairly formal. There is an extensive dictionary between object-
s/concepts/constructions in ring theory and corresponding geometric notions in
scheme theory.

Non-commutative algebras

General examples

We start with a general construction of a non-commutative ring. Let R be a com-
mutative ring and M be a module over R, then we denote EndR(M) the ring117 of 117 Addition is defined point-wise and

multiplication is composition of functions,
i.e.: for any φ, ψ ∈ EndR(M) and x ∈ M,

(φ + ψ)(x) = φ(x) + ψ(x)

(φ · ψ)(x) = φ(ψ(x)).
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endomorphisms of M that preserve the R-module structure, it is not commutative
in general. A prototypical example of such rings that is thoroughly studied studied
in linear algebra is when R is a field and M ∼= Rn, then endomorphisms of M are
precisely the n× n matrices over R, denoted Mn(R).

Our goal for the third part of this course is to arrive at the classification of a
particular kind of rings. Unsurprisingly, the class of all rings is not amenable to
classification, so we will focus on a soon defined subset of Rings. We start our focus
on a particular setting, namely, when R is an algebra over a field k.118 118 Notice that we can also view R as

a k-vector space by forgetting the ring
structure and keeping only addition and
multiplication by scalars (elements of k).
When we want to emphasize this structure,
we will write VR.

Examples 157. Here are some examples of such rings:

1. We have already seen the ring of n× n matrices over k, but it is also a k-algebra
where the inclusion k ↪→ Mn(k) sends λ to the scalar matrix λIn. Also, we remark
that, even for general rings R, the assignment R 7→ Mn(R) is a functor Rings 
Rings.

2. With the underlying field k being the real numbers, we can define the algebra of
Hamiltonian quaternions H := R⊕Ri⊕Rj⊕Rk with the relations

i2 = j2 = k2 = −1

ij = −ji = k

ki = −ik = j

jk = −kj = i.

Surprisingly, H is a division algebra, i.e.: every element has an inverse. 119 119 For a, b, c, d ∈ R, we have

(a + bi + cj + dk)−1 =
a− bi− cj− dk

a2 + b2 + c2 + d2 .

Warning: in general it is ambiguous to write
fractions in a non-commutative division
algebra because x

y can be interpreted as

xy−1 or y−1x. Fractions are well-defined
precisely when the denominators are in the
center, (R is the center of H, so the inverse
described above is well-defined).

3. Let G be a finite group and k a field, the group ring is defined as

k[G] :=

{
∑

g∈G
agg | ∀g ∈ G, ag ∈ k

}
,

where addition and multiplication are extended in a natural way from the field
addition and group operation respectively. These rings are particularly interesting
because k-linear representations of G are equivalent to modules over k[G] (in the
categorical sense).

4. Let k be a field and consider the ring k[x, d
dx ] of polynomials in x and d

dx viewed
as operators on k[x]. Specifically, we want d

dx P(x) = P′(x) for any polynomial in
x.120 It is non-commutative because we have 120 Note that the polynomial P(x) lives in

k[x] as a polynomial ring, it does not live in
the ring of operators we are considering.

(
d

dx
x− x

d
dx

)
P(x) =

d
dx

xP(x)− x
d

dx
P(x) = xP′(x) + P(x)− xP′(x) = P(x),

which implies d
dx x− x d

dx = 1.

Definition 158. A module M over a ring R is said to be simple if it has no non-trivial
submodule. A module M is semisimple if it is a direct sum of simple submodules.
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Examples 159. 1. Let k be a field, R = Mn(k) and M = kn (viewed as column
vectors), then M is simple (as a left Mn(k)-module). To see this, let N ⊆ M be
a non-zero submodule, then N contains some vector v1 = (d1, . . . , dn) where
some di is non-zero, without loss of generality, we can say d1 = 1 and di = 0
for i > 1.121 Then, letting vi = Miv1 ∈ N where Mi is the permutation matrix 121 First, multiply v1 by a permutation

matrix so that the first coordinate is non-
zero, then apply projection onto the first
coordinate and a rescaling by d−1

1 .

corresponding to (1 i), we see that {v1, . . . , vn} ⊆ N is the standard basis, so we
conclude N = M.

2. Any module over a field is semi-simple. This follows from a basic result in linear
algebra, namely, that any vector space has a basis (even infinite dimensional vector
spaces).

3. Let k be a field and G a finite group:

Proposition 160 (Mascke). If char(k) - |G|, then every module over k[G] is semisimple.

Proof. We will show that if N ⊆ M, then there exists a complementary submodule
N′, i.e.: N′ ⊆ M such that N ⊕ N′ = M, then the result will follow because you
can take a minimal non-zero submodule N, write M = N ⊕ N′ and recurse on
N′.122 122 Argue why we can find the minimal.

Since N and M are k-vector spaces, we know that there is a projection π : M→ N
(idempotent and surjective). Observe that ker π is the complement of N as a
k-vector space, but it is not necessarily a k[G]-module. Define the following k[G]-
module homomorphism123 123 It is clearly a homomorphism because

it is the sum of compositions of homo-
morphisms. Also, notice that 1

|G| is only
well-defined when char(k) - |G|, hence the
assumption in the statement.

π̃ =
1
|G| ∑

g∈G
g ◦ π ◦ g−1, where g is the (left) multiplication map by g.

We claim that Im(π̃) = N. ⊆ is trivial because π always projects onto N and
⊇ is clear because π̃ is the identity on N. We conclude that N′ = ker π̃ is the
complementary k[G]-submodule to N.

4. Let us construct a counter example to the previous proposition when char(k) | |G|.
Let k = F2 and C2 = {1, τ} be the cyclic group of order two, then we have

F2[G] ∼= F2[τ]/(τ2 − 1)

= F2[τ]/((τ − 1)2)

= F2[τ − 1]/((τ − 1)2)

= F2[ε]/(ε2)

This is not semisimple over itself because N = F2ε is a simple submodule, but
if N′ is its complementary submodule, then it must contain 1 + aε and hence
ε(1 + aε) = ε ∈ N contradicting N′ ∩ N = ∅.

Definition 161. A ring R is (left)124 semisimple if it is semisimple as a left module 124 We will see that left semisimplicity
is equivalent to right semisimplicity in
corollary 171 but until then, we omit the
adjective left for brevity and never work
with right semisimple rings.

over itself, i.e.: R is a direct sum of minimal left ideals.
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Examples 162. 1. A division ring (or skew field) D is a non-commutative k-algebra
in which every non-zero element has an inverse. Such a D is obviously simple
over itself,125 hence semisimple. 125 Any submodule of D is an ideal, but D

cannot have any non-trivial ideal because
x ∈ D implies xx−1 = 1 ∈ D.2. Let k be a field, R = Mn(k) and denote Vj the set of matrices with non-zero entries

only in the j-th column. The latter is clearly stable under left multiplication by
elements of R,126 and we have R = V1 ⊕ · · · ⊕Vn. A similar argument to example 126 Not true for right multiplication.

159.1 yields that each Vi is minimal/simple, thus R is semisimple.

3. We can extend the previous example and be slightly more abstract. Let k be a
field, V a finite dimensional k-vector space and R = Endk(V). Let ϕ1, . . . , ϕn be a
basis for V∗ and Vi = ker(ϕi) ⊆ V, then we can write

Endk(V) ∼= Hom(V/V1, V)⊕ · · · ⊕Hom(V/Vn, V),

where Hom(V/Vj, V) embeds naturally in Hom(V, V).127 Each summand is 127 Send a linear map T : V/Vj → V to the
operator v 7→ T(v + Vj).clearly stable under left composition by any endomorphism because the kernel

of a linear map can only grow after composition.

4. A direct product of semisimple rings is semisimple.

Wedderburn’s classification

We now list several simple lemmas that will lead to Wedderburn’s classification.

Lemma 163. Let R = Mn(D) where D is a division algebra over a field k and M = Dn

viewed as a left R-module (we already saw it is simple), then EndR(M) ∼= Dop.128 128 Where Dop has the ring structure op-
posite to D, namely, aopbop = (ba)op for
any a, b ∈ D. Note that it retains the usual
algebra structure because k embeds in the
center of D which is the same as the center
of Dop. We often omit the ·op notation for
elements of Dop.

Proof. Define
φ : Dop → EndR(Dn) = d 7→ (·)d,

where (·)d is the coordinate-wise multiplication by d on the right. It is clear that

φ(d1 + d2)(v) = φ(d1)(v) + φ(d2)(v) and φ(d1d2)(v) = φ(d2) ◦ φ(d1)(v),

so φ is indeed a homomorphism. Moreover, φ is injective because the kernel, being an
ideal of Dop, must be the zero ideal.129 For surjectivity, observe that knowing where 129 Recall that Dop has no non-trivial ideal

and any non-zero d is mapped to a non-
zero map, so ker φ cannot be the whole
ring.

a given f ∈ EndR(Dn) sends (1, 0, · · · , 0)t is enough to understand the complete
action of f (by the action of R). For instance, if f (e1) = (d, d2, . . . , dn) and P is
the projection onto the first coordinate, f (e1) = f (Pe1) = P f (e1), thus for each
i > 1, di = 0. Furthermore, for each Mi corresponding to the permutation (1 i),
f (ei) = f (Mie1) = Mi f (e1) = dei. We conclude that f = φ(d).

Lemma 164. Let R be a ring and view M = R as a free left R-module of rank one, then
EndR(M) ∼= Rop.

Proof. For any ϕ ∈ EndR(M) and a ∈ M, we have ϕ(a) = ϕ(a · 1) = a · ϕ(1). Thus,
the map ϕ 7→ ϕ(1) is a bijection from Endk(M) to R and it is clear that addition is
preserved and multiplication is just reversed.
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Lemma 165. If V is a simple R-module, then D = EndR(V) is a division ring.

Proof. Let ϕ ∈ D, then since V is simple, ker(ϕ) is either V or 0. The former leads to
ϕ = 0 and the latter leads to ϕ being injective. It is also easy to check ϕ is surjective
arguing similarly with Im(ϕ). We conclude that ϕ is a bijection and hence has an
inverse.130 130 Checking the inverse is R-linear is an

easy exercise.
Lemma 166. If V is a simple R-module, then EndR(Vn) ∼= Mn(EndR(V)) = Mn(D).

Proof. To see why the first equality holds, first note that any φ ∈ EndR(Vn) can
be decomposed into a sum of R-module homomorphisms φi : Vn → V, where
φi = Pi ◦ φ and Pi is the projection onto the i-th coordinate. Moreover, denote φi,j

to be the restriction of φi to vectors with only the j-th coordinate being non-zero,
then φi = ⊕n

j=1φi,j and it is clear that the matrix φi,j will act on Vn just as φ does.
Checking that φ 7→ (φi,j)i,j∈[n] is an isomorphism is left as an exercise.

The second equality follows from the previous lemma.

Lemma 167. If M ∼= Vn1
1 ⊕ · · · ⊕ Vnr

r , where the Vi are pairwise non-isomorphic simple
modules, then EndR(M) ∼= ⊕r

i=1Mni (Di) where Di = EndR(Vi).

Proof. If we restrict an element φ ∈ EndR(M) to one of the direct summand, then
we get a map φj : V

nj
j → M and we claim that Im(φj) ⊆ V

nj
j .

Theorem 168 (Wedderburn’s classification). If R is a semisimple ring, then there exists
r, n1, . . . , nr ∈N and division rings D1, . . . , Dr such that R ∼= ⊕r

i=1Mni (Di).

Proof. By semisimplicity, we can write R = ⊕j∈S Ij, where the Ij’s are minimal left
ideals. First, observe that we can assume S is finite because 1 ∈ R can be written
uniquely as a finite sum of elements in the Ij’s. Namely, for some finite S′ ⊆ S,
1 = ∑j∈S′ aj, where aj ∈ Ij and this implies R = ⊕j∈S′ Ij.

We obtain a simpler decomposition R = In1
1 ⊕ · · · ⊕ Inr

r ,131 where each Ij are 131 We have regrouped the isomorphic
terms toegethers, i.e.: the exponent means a
direct product of Ij with itself nj times as a
module (not the nj-th power of the ideal Ij).

simple submodules of R and pairwise non-isomorphic. Thus, by lemma 164 and 167,
we conclude

Rop ∼= EndR(R) ∼= Mn1(D1)⊕ · · · ⊕Mnr (Dr),

and the theorem follows.132 132

Remark 169. It remains to show that apply-
ing op will not modify the relevant structure
of the R.H.S. This can be decomposed
into three easy checks, namely that for any
R-module A and B, n ∈ N and division
ring D:

(A⊕ B)op ∼= Aop ⊕ Bop,

Mn(D)op ∼= Mn(Dop),

Dop is a division algebra.

Remark 170. A refinement of this theorem is that, given a semisimple ring R, the
objects r, n1, . . . , nr, D1, . . . , Dr are well-defined invariants of R. This is a consequence
of the Jordan-Holder theorem for R-modules.

Corollary 171. R is left semisimple if and only if it is right semisimple.

Proof. Observe that the functor (−)op : Rings Rings maps left semisimple rings
to right semisimple rings and vice-versa, but by remark 169, it does not change the
structure of their decomposition. Thus, R is left semisimple if and only it has a
decomposition as in Wedderburn’s theorem if and only if it is right semisimple.

Corollary 172. If R is a semisimple finite dimensional algebra over a field k, then the de-
composition becomes R ∼= Mn1(D1)⊕ · · · ⊕Mnr (Dr) where the Di’s are finite dimensional
over k. Moreover, if k = k̄, then R = Mn1(k)⊕ · · · ⊕Mnr (k).

133 133 An important instance of this specific
case is the group ring:

C[G] = Mn1 (C)⊕ · · · ⊕Mnr (C),

where n1, . . . , nr are the dimensions of the
irreducible k-linear representations of G. It
follows by dimensionality check that |G| is
the sum of the squares of the dimensions of
its irreducible representation, a useful result
in representation theory.
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Proof. Finite dimensionality of the Di’s is clear and the claim that Di = k holds be-
cause if α ∈ Di, then k(α) is finite dimensional over k and still commutative because
α commutes with all of k and its powers. Therefore, k(α) is a finite dimensional field
extension, thus α is algebraic and α ∈ k. We conclude Di = k.

Semisimple Algebras

Definition 173. A ring R is simple if it has no proper non-trivial two-sided ideals.

Remark 174. The motivation for this definition is that the kernel of a homomorphism
is a two-sided ideal, thus if R is simple then any non-zero φ : R → S is injective.
This fact will be used in lots of arguments, often with the additional fact that R and
S have the same dimension over some field yielding that φ is an isomorphism.

Examples 175. 1. Any field is simple and if R is commutative and simple, then it
has no non-trivial ideal so it is a field.

2. If D is a division ring and n ∈N, then Mn(D) is simple.

Proof. Let I be a non-zero two-sided ideal of Mn(D), pick a non-zero X ∈ I and
s, t ∈ [n] such that Xs,t 6= 0. We can assume that Xs,t = 1 because we can rescale
by any element of D. Let Ei,j ∈ R be the matrix which has a one in its (i, j)-th
entry and zeros everywhere else. One can verify that Es,sXEt,t = Xs,tEs,t = Es,t ∈
I.134 Then, we conclude Ei,j ∈ I for any i, j ∈ [n] because we can apply any 134 We first recall that

Ea,bEc,d = δb,cEa,d,

and that we can decompose X as

X = ∑
k,`∈[n]

Xk,`Ek,`Xk,`.

Thus, it follows that

Ei,iXEj,j = ∑
k,`∈[n]

δi,kXk,`Ei,`Ej,j

= ∑
k,`∈[n]

δi,kXk,`δ`,jEi,j = Xi,jEi,j.

permutation to the columns and rows by multiplying by permutation matrices on
the left and right respectively. Since these matrices generate Mn(D), we conclude
I = Mn(D).

3. Recall the ring R = C[x, d
dx ] with x d

dx −
d

dx x = −1 from example 157.4. We claim
that R is simple.

Proof. Let I be a non-zero two-sided ideal, it contains a non-zero element

α = Pr(x)
dr

dx
+ · · ·+ P1(x)

d
dx

+ P0(x).

One can check that [ d
dx , P(x)] = P′(x), [ d

dx , P(x) dt

dx ] = P′(x) dt

dx and [ dr

dx , x] = r dr−1

dx .
Thus, if we let m = max{deg Pj | 0 ≤ j ≤ r}, we can compute

...m times[
d

dx
, [

d
dx

, α]] = at
dt

dx
+ · · ·+ a1

d
dx

+ a0 = β,

where ai ∈ C and 0 ≤ t ≤ r. Now apply the commutator with [β, x] r times to
obtain t!at ∈ I. Thus, I has a unit and I = R.

Remarkably, we can also show that R is not semisimple.
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Proof. Consider the chain R ⊇ R d
dx ⊃ R d2

dx ⊃ · · · . We claim that these inclusions

are all proper, namely, for any t, R dt

dx ⊃ R dt+1

dx . Notice that dt

dx /∈ R dt+1

dx because
dt

dx xt = t! 6= 0 whereas for any P ∈ R, P(x, d
dx )

dt+1

dx xt = 0.

We have shown that R has an infinite composition series and this implies R is a
not a finite direct sum.

In order to avoid examples such as C[x, d
dx ] where a simple ring is not semisimple,

we can impose some type of finiteness condition on R. We explore two different
options.

Theorem 176. If R is a finite dimensional k-algebra which is simple, then R ∼= Mn(D) for
some division k-algebra D and hence is semisimple.

Proof. Let V be a minimal non-zero left ideal of R.135 If r ∈ R, then since the right 135 Minimal non-zero ideals exist because
of finite dimensionality. Indeed, left ideals
can be seen as k-subspaces of R, so you
cannot have a strictly decreasing chain os
left ideals if R is finite dimensional.

multiplication map (−)r : V → V · r is a homomorphism of left R-modules, it has a
trivial kernel because V is minimal, thus V · r is either 0 or isomorphic to V as a left
R-module. Therefore, ∑r∈R V · r is a non-zero two-sided ideal,136 and hence must be

136 It is clear that it is a left ideal because
each V · r is a left ideal. Now, multiplying
on the right by any r′ ∈ R yields

∑
r∈Rr′

V · r ⊆ ∑
r∈R

V · r,

so it is indeed a right ideal.

equal to R.
Now, each of these V · r are minimal ideals, so we have written R as a sum

of simple submodules. Furthermore, this sum can be made finite with a similar
argument as in the proof of 168 and it is a direct sum because the intersection of any
two distinct minimal ideal is a smaller ideal, so it must be trivial. From Wedderburn’s
classification, we infer that R ∼= Mn(D) because if there were more terms in the sum,
R would not be simple.

Corollary 177. Every finite dimensional simple k- algebra is semisimple and every finite
dimensional semisimple k-algebra is a direct sum of simple k-algebras.

Definition 178. A ring R is (left) Artinian if any strictly descending chain of left
ideals is finite.137 137 Note the parallel with Noetherian rings.

We will usually refer to left Artinian rings
simply as Artinian rings and we will be
precise when talking about both kinds at
the same time. Just as Noetherian rings
have maximal ideals, Artinian rings always
contains minimal non-zero ideals.

Examples 179. 1. Any finite ring is trivially Artinian. (e.g.: Z/nZ, Mm(Z/nZ), etc.)

2. PID’s are Noetherian but usually not Artinian (e.g.: Z contains the infinite de-
creasing chain (2) ⊇ (4) ⊇ (8) ⊇ · · · ).

3. A finite dimensional k-algebra is both left and right Noetherian and Artinian (e.g.:
C[G], where G is finite). Recall that ideals will be subspaces of that algebra and
infinite decreasing or increasing chains cannot exist in finite dimensional vector
spaces.

4. A semisimple ring R is both left and right Noetherian and Artinian.

Proof. We will show that left semisimple implies left Noetherian and Artinian.
The argument for the "right" counterpart of this statement is similar and since left
semisimple and right semisimple is equivalent, the claim will be proven.
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5. The ring C[x, d
dx ] is neither left nor right Artinian.

Proof. Consider the chain (x) ⊇ (x2) ⊇ · · · as left ideals and as right ideals
separately.138 138 More precisely, we can see (xk) as the

left ideal generated by xk or the right ideal
generated by xk .

6. Triangular rings: Let R and S be two rings, an (R, S)-bimodule R MS is an abelian
group (with operation +) equipped with a left R-module and a right S-module
structure such that r(ms) = (rm)s for any r ∈ R, s ∈ S, m ∈ M.139 The triangular 139 Example of bimodule: If V1 and V2 are

k-vector spaces, then Homk(V1, V2) is natu-
rally (Endk(V2), Endk(V1))-bimodule with
the actions being function composition.

ring associated to a bimodule R MS is

A =

{[
r m
0 s

]
| r ∈ R, s ∈ S, m ∈ M

}
,

where addition and multiplication are the usual matrix addition and multiplica-
tion.140 In the following, we denote 140 We note that order of multiplication

is important and having a bimodule
structure on M is necessary to make the
multiplication well-defined:[

r1 m1
0 s1

] [
r2 m2
0 s2

]
=

[
r1r2 r1m2 + m1s2

0 s1s2

]
.

e1 =

[
1 0
0 0

]
, e2 =

[
0 1
0 0

]
, e4 =

[
0 0
0 1

]
.

Observe that the subset Me2 is a two-sided ideal of A because[
r1 m1

0 s1

] [
0 m
0 0

]
=

[
0 r1m
0 0

]
and

[
0 m
0 0

] [
r2 m2

0 s2

]
=

[
0 ms2

0 0

]
.

Moreover, we have a clear isomorphism A/Me2 ∼= R× S.

Proposition 180. If R and S are left Artinian, then A is left Artinian if and only if M
is finitely generated over R.

7. In the setting of the last item, let R = Q(x), S = Q and M = Q(x) with the
natural bimodule structure, then A is left Noetherian and Artinian but neither
right Noetherian nor right Artinian.

Proof. Let I be a left ideal of A we will show that it finitely generated, showing
A is left Noetherian. Consider first the case where

I ⊆
[

Q(x) Q(x)
0 0

]

and notice that the R.H.S. is also a left ideal and that it has the left Q(x)-module
structure of Q(x)2 where multiplication by q ∈ Q(x) is simulated by multiplica-
tion by qe1 on the left, i.e.:[

q1 r1

0 0

]
+ qe1 ·

[
q2 r2

0 0

]
=

[
q1 + qq2 r1 + qr2

0 0

]
.

Since Q(x) is a PID, we see that I is generated by at most two elements as a
module141 and hence as an ideal. 141 Any submodule B of a free module A

over a PID is a free module of rank at most
the rank of A.
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In the second case, we know there exists a non-zero a ∈ Q such that[
q1 q2

0 a

]
∈ I,

then for any q ∈ Q(x), multiplying the element above on the left by q
a e2 yields

qe2, so we conclude

Qe2 :=

{[
0 q
0 0

]
| q ∈ Q

}
⊂ I.

Then, the projection that forgets about the top right coordinate maps into Q(x)×
Q and has Q(x)e2 as its kernel., so we conclude that A/Q(x)e2 ∼= Q(x) × Q.
The R.H.S. being Noetherian, we can see that I/Q(x)e2 is finitely generated in
A/Q(x)e2 and hence so is I in A.

We now find an infinite ascending strict inclusion chain of right ideals in A to
show it is not right Noetherian. For any n ∈N, let

In = x−nQe2 =

{[
0 q

xn

0 0

]
| q ∈ Q

}
,

it is a right ideal of A because for any q1, q2 ∈ Q(x) and a ∈ Q,[
0 q

xn

0 0

] [
q1 q2

0 a

]
=

[
0 aq

xn

0 0

]
∈ In.

Moreover, it is clear that I1 ⊆ I2 ⊆ · · · , but each inclusion is proper because
1

xn+1 e2 ∈ In+1 − In. Thus, we get the desired chain of ideals.

Proposition 181. Finitely generated modules over a left Artinian ring R satisfies the de-
scending chain conditions for left R-modules.

Proof. Exercise.

Theorem 182 (Artin). Let R be a simple ring, then the following are equivalent:

i. R is left Artinian.

ii. R has a minimal non-zero left ideal.

iii. R is semisimple.

iv. R ∼= Mn(D), where D is a division ring.

Proof. (i =⇒ ii) Follows from the definition of Artinian.
(ii =⇒ iii)142 Let I be a minimal left ideal in R and recall that for any r, I · r is 142 We use a generalization of the argument

from theorem 176’s proof.either 0 or a minimal left ideal isomorphic to I. Moreover, we have that ∑r∈R I · r is
a non-zero two-sided ideal, so is equal to R. We can then conclude R is semisimple.

(iii =⇒ iv) From the classification of semisimple rings, R is isomorphic to a direct
sum of matrix rings over division rings. If there were more than one summand, R
would not be simple, so iv follows.
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(iv =⇒ i) Observe that Mn(D) is a free left module over D and has rank n2143, 143 The action of D is multiplication by
scalar matrices and generators are {Ei,j |
i, j ∈ [n]}.

thus left ideals correspond to submodules and an infinite strict chain of submodules
cannot occur (because of finite dimensionality).

Definition 183. An ideal I in a ring R is said to be nilpotent if there exists k such
that Ik = 0, i.e.: a1 · · · ak = 0 for all a1, . . . , ak ∈ I.144 144 Note that, in general, every element in

an ideal being nilpotent does not imply the
ideal is nilpotent. We call ideals satisfying
this property nil ideals.

Lemma 184. If I1 and I2 are nilpotent left ideals, then I1 + I2 is also nilpotent.

Proof. Let r, s ∈ N be such that Ir
1 = Is

2 = 0, then consider the general r + s-fold
product of elements of I1 + I2

(a1 + b1) · · · (ar+sbr+s); ∀1 ≤ i ≤ r + s, ai ∈ I1, bi ∈ I2.

Observe that a any monomial in this product has either more than r ai’s or more than
s bi’s, and since I1 and I2 are left modules, we can see this monomial as a product of
at least r elements of I1 or s elements of I2.145 We conclude that all monomials are 145 For instance, if r = 3 and the monomial

is b1a1b2b3a4a5, then we can collapse it into
a′1a′2a′3 where a′1 = b1a2, a′2 = b2b3a4 and
a′3 = a5. We notice that each a′i is in I1, so
this monomial is zero. This argument is
not necessary in commutative rings as we
can rearrange the product to have all the a′i
together and we get a zero in the product.

zero and hence the product is zero and this implies I1 + I2 is nilpotent.

Lemma 185. If I is a nilpotent left ideal in an Artinian ring, then it is contained in a
nilpotent two-sided ideal.

Proof. Let J = ∑r∈R I · r = IR, note that J is still nilpotent146 and is a two-sided ideal
146 Indeed, if Ik = 0, then we can prove
Jk = 0 by using the same collapsing trick as
in lemma ??, namely, we have

i1r1 · · · ikrk = i1i′2 · · · i′k = 0.

that contains I.

Lemma 186. If R is an Artinian ring and I is a nil left ideal, then I is nilpotent.

Proof. Consider the infinite chain of ideals I ⊇ I2 ⊇ · · · . Since R is Artinian, the
chain must become constant at some k ∈ N. We will prove that J := Ik = 0.
Suppose it is not and let K0 be the minimal ideal such that JK0 6= 0,147 then since 147 It exists because R is Artinian.

J2 = I2k = Ik = J is non-zero, we obtain K0 ⊆ J.
Now, fix a ∈ K0 such that Ja 6= 0, we have Ja ⊆ K0 and J(Ja) = J2a = Ja 6= 0,

thus by minimality of K0, we must have Ja = K0. This implies there exists x ∈ J such
that xa = a and hence xna = a 6= 0 for any n ∈N. This contradicts the fact that x is
nilpotent.

Theorem 187. If R is an Artinian ring, then there is a unique maximal nilpotent two-sided
ideal of R.

Proof. Let J be the sum of all nilpotent left ideals in R, then J is clearly a left ideal
and we claim that it is two-sided. Indeed, for any a ∈ I, a can be written as a finite
sum, so there are ideals I1, . . . , In such that a ∈ ∑n

i=1 Ii = K. Since K is a nilpotent left
ideal, we can infer that a is nilpotent and that it is contained in a two-sided nilpotent
ideal K+. We infer that aR ⊆ K+ ⊆ J,148 so we conclude that J is a two-sided ideal. 148 The first inclusion holds because K+ is

two-sided and the second holds because K+

is a nilpotent left ideal, so it is a summand
in J.

Furthermore, observe that any element in J is nilpotent because it is contained in
a finite sum of nilpotent left ideals. Thus, by lemma 186, we have that J is nilpotent.
Uniqueness and maximality follows trivially because any other nilpotent two-sided
ideal is a nilpotent left ideal and hence contained in J.
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Definition 188. This unique maximal nilpotent two-sided ideal is called the Artin-
Wedderburn radical.

Lemma 189 (Brauer). If I is a minimal left ideal, then either I2 = 0 or ∃e ∈ R such that
e2 = e and I = Re.

Proof. Recall that for any a ∈ R, I · a is either 0 or isomorphic to I by the minimality
of I. If I2 6= 0, then ∃a ∈ I such that Ia 6= 0, then Ia = I and right multiplication by
a is an isomorphism from I to itself.149 Hence, there exists e ∈ I such that ea = a 149 Ia is a subset of I isomorphic to I, so it

must be I.and we infer that (e2 − e)a = 0 and since e2 − e ∈ I and a is a bijection (its kernel is
trivial), we must have e2 − e = 0. In other words, e is idempotent and furthermore,
it is obvious that Re ⊆ I and then I = Re follows from minimality of I.

Theorem 190. If R is Artinian and its Artin-Wedderburn radical is zero, then R is semisim-
ple.

Proof. Let I1 be a minimal left ideal of R. If I2
1 = 0, then I1 is contained in the Artin-

Wedderburn radical (use the lemmas), so I1 = 0 which is a contradiction. Thus,
I2
1 6= 0 and by Brauer’s lemma, there exists an idempotent e ∈ I that generates

I, namely I = Re. Observe that R = Re + R(1 − e). Moreover, if x ∈ Re, then
xe = x and if in addition x ∈ R(1− e), then xe = y(1− e)e = 0. We conclude that
Re ∩ R(1− e) = {0} and that R is a direct sum.

We found that R = I1 ⊕ I′1 where I′1 is a left ideal. If I′1 is minimal, we are done.
Otherwise, we can apply the same argument on I′1 to get a decomposition I2 ⊕ I′2
and the recursion is guaranteed to terminate because R is Artinian. The end result is
a decomposition of R into minimal left ideals and we conclude R is semisimple.

Corollary 191. If R is an Artinian ring and J is its A-W radical, then R/J is semisimple.150 150 Prove this.

For completeness, we will state Wedderburn’s main theorem that refines the last
result, but we will not prove it. The results needed to prove it are covered in chapter
II.5 of Knapp.

Theorem 192. If R is a finite dimensional k-algebra and J its Artin-Wedderburn radical,
then there is a semisimple k-algebra S ⊆ R such that R ∼= S⊕ J as k-vector spaces.151 151

Remark 193. We have proved already that
there is an exact sequence

0→ J → R→ S→ 0,

where S is semisimple and this finer
theorem states that there is a splitting
S→ R.

Examples 194. 1. Let R be the ring of upper triangular 2× 2 matrices with entries
in a division ring D. A simple computation shows that if the diagonal entries of
an element are non-zero, then any power of this element will be non-zero. Thus,
we can see the Artin-Wedderburn radical is

I =

{[
0 b
0 0

]
| b ∈ D

}
.

It is also easy to show that we have a decomposition R/I = D⊕ D.

2. Let R be the ring of upper triangular (n + 1)× (n + 1) matrices with entries in
a division ring D. Similarly to above, we can infer that the Artin-Wedderburn
radical J is the set of matrices with a zero diagonal. One can further observe that
Jn = 0, but Jk 6= 0 for 1 ≤ k < n.
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3. Let A be the triangular ring associated to R MS, this gives a generalization of the

first example. The A-W radical is the set of matrices of the form

[
0 m
0 0

]
and we

have the decomposition A/J = R⊕ S.

Remark 195. The converse of theorem 190 is also true, namely, if an Artinian ring R
is semisimple, then its Artin-Wedderburn radical is zero. To see this, recall Wedder-
burn’s classification that states if R is semisimple, then

R ∼= Mn1(D1)⊕ · · · ⊕Mnt(Dt).

Moreover, we know from example 175.2 that Mn(D) is simple for any n ∈ N and
division algebra D, so any two sided ideal must contain a full summand of R,152 152 To obtain this, one has to argue that the

projection of a two-sided ideal on any of the
summand is also a two-sided ideal of the
summand.

and hence it cannot be nilpotent. We conclude that the Artin-Wedderburn radical is
zero.

Fact 196. The following are equivalent.

1. B is semisimple as a module over itself B = ⊕Ibi.

2. Every left B-module is isomorphic to a sum of modules isomorphic to I.

If M is a left B-module and M′ is a submodule, then there exists M′′ submodule such
that M = M′ ⊕M′′.

Our final goal for this course is to delve more deeply into the structure of simple
k-algebras.

Central simple algebras

In this section, we let k be a field and A and B be finite dimensional k-algebras.
Recall the usual definition A ⊗k B for k-vector spaces where elements are of the
form153 153 Note that this representation is not

unique.∑
i

ai ⊗ bi, with ai ∈ A, bi ∈ B.

We also have dimk(A⊗k B) = dimk(A)dimk(B).154 Moreover, A⊗k B inherits the 154 There is a natural basis for the tensor
product of two vector spaces. That is, if
{ai | i ∈ [n]} and {bi | i ∈ [m]} are
k-bases for A and B respectively, then
{ai ⊗ bj | i ∈ [n], j ∈ [m]} is a basis for
A⊗k B.

structure of k-algebra by setting (a1 ⊗ b1)(a2 ⊗ b2) = (a1a2 ⊗ b1b2).155

155 We leave the cumbersome task of verify-
ing this is a well-defined operation to the
reader. Alternatively, we refer the reader to
the Higher Algebra I lecture notes written
by Prof. Eyal Goren for a more general and
thorough study of tensor products.

Remark 197. A is naturally a sub-algebra of A⊗k B by sending a to a⊗ 1 and similarly
for B. This is clear when consider the definition of A ⊗k B as the pushout of the
following diagram in the category of k-algebras.

k A

B

Fact 198. For any A, B, C ∈ Algk, we have

1. A⊗k (B⊕ C) ∼= A⊗k B⊕ A⊗k C (distributivity),
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2. A⊗k (B⊗k C) ∼= (A⊗k B)⊗k C (associativity), and

3. A⊗k B ∼= B⊗k A (commutativity).

Examples 199. 1. If L is any k-algebra and n ∈N, then Mn(k)⊗k L ∼= Mn(L).

Proof. As k-vector spaces, we have

Mn(k) ∼= kE1,1 ⊕ · · · ⊕ kEn,n,

then if we tensor by L and apply the isomorphisms156 kEi,j ⊗k L → LEi,j = 156 Explain why they are isomorphisms.

kEi,j ⊗ ` 7→ k`Ei,j, we get

Mn(k)⊗k L ∼= (kE1,1 ⊗k L)⊕ · · · ⊕ (kEn,n ⊗k L) ∼= LE1,1 ⊕ · · · ⊕ LEn,n ∼= Mn(L).

2. A special case of the above yields Mn1(k)⊗k Mn2(k) ∼= Mn1(Mn2(k)) ∼= Mn1n2(k).

3. Let H be the Hamiltonian quaternions then H⊗R C ∼= M2(C).

Proposition 200. If F and L are finite field extensions of k with F/k separable, then F⊗k L
is a finite product of field extensions of k.157 157 Separability is crucial in this statement as

is witnessed by the following. Let k = Fp(t)
and F = Lk[x]/(xp − t) = Fp[t1/p]. What
is F ⊗k F? By our argument beside, it is
isomorphic to

F[x]/(xp − t) = F[x]/(x− t1/p)p,

and this cannot be a product of fields
because it has nilpotent elements, namely
(x− t1/p).

Proof. The primitive element theorem implies that F = k[α] = k[x]/(p(x)), where
p(x) is the minimal polynomial of α ∈ k. Taking the tensor, we obtain

F⊗k L ∼= k[x]/(p(x))⊗k L ∼= (k[x]⊗k L)/(p(x)⊗ 1) ∼= L[x]/(p(x)).

Note that there is no reason that p(x) stays irreducible in L[x], but it is still separable,
so p(x) factors into distinct irreducible factors p(x) = p1(x) · · · pn(x), thus we can
use CRT to get the finite product of field extensions.

Question 201. If A and B are simple/semisimple algebras over k, what can we say about
A⊗k B?

To answer this question, we will need to understand the structure of two-sided
ideals of A⊗k B. Moreover, we will assume from now on that all algebras are finite
dimensional.

Definition 202. A k-algebra A is central if the center of A is exactly k.

Examples 203. 1. H is central simple over R. Even though it contains copies of C

they do not commute with each other.

2. Mn(k) is central simple over k. The only matrices in the center are the scalar
matrices (diag(λ, . . . , λ) for λ ∈ k).

3. If L is a field extension of k, then L is central over k if and only if L = k because
the center of L is L itself.
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Proposition 204. Suppose that A and B k-algebras with B central simple over k. Then, the
two-sided ideals of A⊗k B are precisely the ones of the form I ⊗k B where I is a two-sided
ideal of A.

Proof. Clearly, I ⊗k B is a two-sided ideal if I is a two-sided ideal of A. Conversely,
let J be a two-sided ideal of A⊗k B and I = {a ∈ A | a⊗ 1 ∈ J}, it is easy to check
that I is a two-sided ideal of A and I ⊗k B ⊆ J,158 we claim this is in fact an equality. 158 The first part is true because

ar ∈ A⇔ ar⊗ 1 ∈ J ⇔ (a⊗ 1)(r⊗ 1) ∈ J,

and similarly for right multiplication. The
second part is true because if a⊗ 1 ∈ J, then
a⊗ b ∈ J for any b ∈ B.

Let x1, . . . , xn be a k-basis for A chosen so that x1, . . . , xm is a k-basis for I and
xm+1, . . . , xn is the completion of the basis. Then, we can write

A⊗k B = {
n

∑
i=1

xi ⊗ bi | b1, . . . , bn ∈ B}.

We need to show if ∑n
i=1 xi⊗ bi ∈ J, then bi = 0 for all i > m. Equivalently, we need to

show if ∑n
i=m+1 xi⊗ bi ∈ J, then bi = 0.159 Let t be minimal for the property that there 159 We already know ∑m

i=1 xi ⊗ bi ∈ J, so we
can subtract by it.exists a subset {y1, . . . , yt} ⊆ {xm+1, . . . , xn} with 0 6= ∑ yi ⊗ bi ∈ J. By minimality,

all the bi’s are non-zero. Consider the set {b1 ∈ B | ∃∑ yi ⊗ bi ∈ J}. It is clearly a
two-sided ideal which is non-zero by definition of t, but since B is simple, it must be
all of B, in particular it contains one. Therefore, there exists β = y1⊗ 1+∑ yi⊗ bi ∈ J.
For any b ∈ B, since J is a two-sided ideal, we have

J 3 (1⊗ b)β− β(1⊗ b) = y2 ⊗ bb2 − b2b + · · ·+ yt ⊗ bbt − btb.

The minimality of t implies that bbj − bjb = 0 for j = 2, ..., t. In other words, b2, ..., bt

are in the center in B, namely in k. Finally, we set y′i = yibi to find

t

∑
i=1

y′i ⊗ 1 ∈ J,

thus ∑ y′i ∈ I and this contradicts our construction of the yi’s.160 160 They were a subset of {xm+1, . . . , xn} of
which, none are in I.

Corollary 205. If A is simple over k and B is central simple over k, then A⊗k B is also
simple over k.161 161 If A is simple, then the only two-sided

ideals of A⊗k B are 0⊗k B = 0 and A⊗k B,
so there is no non-trivial two-sided ideal.Proposition 206. If k has characteristic 0, A is semisimple over k and F is a finite separable

extension of k, then A⊗k F is also semisimple over k.

Proof. By Wedderburn’s classification, we can write A as direct sum of simple k-
algebras, so we will first prove the case where A is simple. Let Z be the center of A,
it is clear that A is a central simple algebra over Z and we have162 162 In facts 198, we mentioned that the

tensor product was associative when done
over the same algebra, but the version of
associativity used here is slightly more
complex and uses the fact that Z is a (Z, k)-
bimodule.

A⊗k F = (A⊗Z Z)⊗k F = A⊗Z (Z⊗k F) = A⊗Z (K1 ⊕ · · · ⊕ Ks),

where Ki’s are finite extensions of Z that arise from proposition 200.163 The tensor
163 To use this result, we only need to argue
that Z is a finite field extension because
any field extensions over a finite field of
characteristic 0 is separable. Since A is
simple and finite dimensional, we can
write it as Mn(D) for a finite dimensional
division k-algebra D. Then, it is easy to see
the center is the center of D and hence is a
finite field extension of k.

product also distributes so we obtain A⊗Z K1 ⊕ · · · ⊕ A⊗Z Ks. Since each A⊗Z Ki

is simple because A is central simple over Z and Kj is simple over Z, we conclude
that A⊗k F is semisimple.

Definition 207. If B is a subalgebra of A, then the centralizer of B in A, denoted
ZA(B), is the set of all elements of A that commute with all of B. For instance,
Z(A) := ZA(A) is the center of A. The centralizer is in fact a subalgebra.
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Lemma 208. Let A and B be k-algebras with B central, then

i. ZA⊗k B(1⊗k B) = A⊗k 1, and

ii. Z(A⊗k B) = Z(A)⊗k 1.

Proof. i. (⊇) is trivial.164 164 For any a ∈ A and b, b′ ∈ B,

(a⊗ b)(1⊗ b′) = (1⊗ b′)(a⊗ b)

if and only if bb′ = b′b, so a⊗ b is in the
center of 1⊗k B if and only if b is in the
center of B, namely, b ∈ k. This implies that

a⊗ b = ab⊗ 1 ∈ A⊗k 1.

(⊆) Let a1, . . . , an be a basis for A/k, and recall that every element of A⊗k B can
be written uniquely in the form a1 ⊗ b1 + · · ·+ an ⊗ bn for some b1, . . . , bn ∈ B.
In other words, after having chosen a basis for A, A⊗k B can be identified by
Bn.165 Let α ∈ ZA⊗k B(1⊗k B), then (1⊗ b)α = α(1⊗ b) and we can write

165 Addition and multiplication behave just
like in Bn:

∑
i

ai ⊗ bi + ∑
i

ai ⊗ b′i = ∑
i

ai ⊗ (bi + b′i), and

b

(
∑

i
ai ⊗ bi

)
= (1⊗ b)

(
∑

i
ai ⊗ bi

)
= ∑

i
ai ⊗ bbi .

a1 ⊗ bb1 + · · ·+ an ⊗ bbn = a1 ⊗ b1b + · · ·+ an ⊗ bnb,

where α = a1 ⊗ b1 + · · ·+ an ⊗ bn. By uniqueness, we get bib = bib for any b, so
each bi is in the center of B, namely, in k. Then, we have

α = a1b1 ⊗ 1 + · · ·+ anbn ⊗ 1 =

(
∑

i
aibi

)
⊗ 1 ∈ A⊗k 1.

ii. Part i implies that the center is contained in A ⊗k 1 and it is obvious that
(a′ ⊗ 1)α = α(a′ ⊗ 1) for all α’s if and only if a ∈ Z(A) (it is even enough to
take α ∈ A⊗k 1).

Corollary 209. If A and B are central simple algebras, then A⊗k B is central simple.166 166 Simplicity comes from corollary 205 and
according to the previous theorem, the
center of A⊗k B will be 1⊗ 1 = k.Example 210. If A is central simple over k, then certainly Aop is also central simple167

167 The center and two-sided ideals of the
opposite alebra are the exactly the same.

and in fact A⊗k Aop ∼= Mn(k). More precisely, A⊗k Aop is canonically identified
with Endk(VA) by sending a⊗ a′ to the linear map v 7→ ava′.168 This map is injective 168 By tedious verifications, one can show

that this is a k-algebra homomorphism.because its kernel is a two-sided ideal and A⊗k Aop is simple, surjectivity follows
from counting dimensions (dimk(A)2 = dimk(A)2).

Corollary 211. If A is central simple over k and L is a field extension of k, then A⊗k L is
central simple over L.

Proof. We already know it is simple by corollary 205. Moreover, lemma 208 yields

Z(A⊗k L) = 1⊗k Z(L) = 1⊗k L = L.

Proposition 212. If A/k is central simple, then dimk(A) is a square.

Proof. Let k̄ be the algebraic closure of k, then the previous corollary says that A⊗k k̄
is a central simple algebra over k̄ and from Wedderburn’s classification, we know
A⊗k k̄ = Mn(D) where D is a finite dimensional division k̄-algebra. In addition, note
that such a D must be equal to k̄169 an therefore dimk̄(A⊗k k̄) = dimk̄(Mn(k)) = n2. 169 Since D is a finite extension, it is alge-

braic and hence cannot be bigger than
k̄.

But, we also have that this is equal to dimk(A) (why?)
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Corollary 213. If D is a finite dimensional central division algebra over k, then dimk(D) =

n2 for some n.170 170 This is a trivial application of the proposi-
tion using the fact that division algebras are
simple. Note that a particular application
of this corollary is the fact that there are
no central division algebras of dimension
three over R. In fact, we will later see Frobe-
nius’ theorem that shows there are only
two central division algebras over R up to
isomorphism.

Theorem 214 (Skolem-Noether). Let A be a central simple algebra over k and B be a
simple subalgebra of A. If f , g : B → A are k-algebra homomorphisms, then there exists
x ∈ A× such that f (b) = xg(b)x−1 for all b ∈ B.

Proof. Consider first the case where A = Mn(k). Notice that f : B → A endows
Vf := kn with the structure of a left B-module, namely, for v ∈ kn and b ∈ B,
b ∗ v = f (b) · v ∈ kn (with matrix vector multiplication). Because B is simple, there
is a unique simple left B-module VB up to isomorphism. 171 In particular, Vf

∼= Vt
B

171 Why is this true? Is this an app of
(Jordan-Holder)? VB is minimal left ideal
unique up to isomorphism.

for some t ∈ N (as left modules), and likewise, Vg is also isomorphic to Vt
B as left

B-modules.172 Thus, there exists an isomorphism of left B-modules φ : Vf → Vg,
172 They are of the same dimension, so they
are isomorphic.and it must satisfy φ( f (b) · v) = g(b) · φ(v). Equivalently, for all v ∈ Vg, f (b) =

φ−1g(b)φ.173 173 To conclude that φ ∈ A = Mn(k), we
have to show φ is a k-linear map from Vf =
kn to Vg = kn. To see this, first note that
φ(v + w) = φ(v) + φ(w) follows from the
properties of a B-module homomorphism.
Second, the k-algebra homomorphism
properties imply that for any λ ∈ k,

f (λ) = g(λ) = diag(k, · · · , k).

Therefore, φ is an element of Mn(k).

For the more general case, we consider the maps

f ⊗ 1, g⊗ 1 : B⊗k Aop → A⊗k Aop = Mn(k).

Since Aop is CSA and B is simple, B ⊗k Aop is simple by corollary 205. Then, by
applying our first case, we find an element X ∈ (A⊗k Aop)× such that f ⊗ 1 =

X(g⊗ 1)X−1. More explicitly, for all b⊗ a′ ∈ B⊗ Aop, we have

f (b)⊗ a′ = X(g(b)⊗ a′)X−1.

Setting b = 1, we observe that (1 ⊗ a′)X = X(1 ⊗ a′) for all a′ ∈ Aop, thus
X ∈ ZB⊗k Aop(1⊗k Aop). We can conclude from lemma 208 that X ∈ B⊗ 1. Thus,
our more general equation becomes

f (b)⊗ a′ = (x⊗ 1)(g(b)⊗ a′)(x−1 ⊗ 1) = (xg(b)x−1 ⊗ a′),

and we conclude f (b) = xg(b)x−1.

Corollary 215. If A is a CSA over k, then every non-zero k-algebra homomorphism φ :
A→ A is inner, i.e.: there exists x ∈ A× such that φ(a) = xax−1.174 174 Apply the Skolem-Noether theorem with

B = A, f = φ and g = 1.
Example 216. As a further corollary, we obtain that any element of Aut(Mn(k)) is
realized by a conjugation of an invertible matrix. In other words, any automorphism
of Mn(k) is a change of basis.

Remark 217. Recall that any simple k-
algebra A will be a CSA over its center
Z(A), thus, in the corollary above, we
can drop the centrality assumption and
instead assume φ is a Z(A)-algebra auto-
morphism.

Lemma 218. Let B ⊆ A and B′ ⊆ A′ where A and A′ are CSA over k and B and B′ are
simple over k and let C = ZA(B) and C′ = ZA′(B′). Then,

ZA⊗k A′(B⊗k B′) = C⊗k C′.

Proof. Clearly C⊗k C′ commutes with B⊗k B′, therefore ⊇ is trivial. Moreover, ob-
vious properties of centers yield

ZA⊗k A′(B⊗k B′) ⊆k ZA⊗k A′(B⊗k 1) ∩ ZA⊗k A′(1⊗k B′).
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It is easy to check that the R.H.S. is equal to C⊗k A′ ∩ A⊗k C′,175 and furthermore 175 For any a⊗ a′ ∈ A⊗k A′, (ab⊗ a′) =
(ba ⊗ a′) if and only if a ∈ ZA(B) and
similarly for the symmetric case.

the latter is equal to C⊗ C′ because if c⊗ a′ = a⊗ c′ is in the intersection, then it
commutes with B⊗k 1 and 1⊗k B, so we infer a ∈ C and a′ ∈ C′.

Lemma 219. Let B be a simple k-algebra and let A = Endk(VB), where VB is B viewed as
a k-vector space.176 Then, ZA(`(B)) = r(Bop). 176 There are two k-algebra homomorphism

` : B → Endk(VB) = b 7→ b(−) and
r : Bop → Endk(VB) = (−)b.Proof. We can think of ZEndk(VB)

(`(B)) as endomorphisms of VB that commute with
the left action of B, namely, the left B-module endomorphisms of VB. Let φ be an
element of EndB(VB), then φ(b) = b · φ(1), hence φ is the image of φ(1) under r. We
get that r : Bop → EndB(VB) is surjective, it is injective because Bop is simple.177 177 Checking that this map preserves the

k-algebra structure is left as a simple
exercise.Theorem 220 (Double centralizer). Let A be a CSA over k, B a simple subalgebra and

C = ZA(B), then

1. C is simple.

2. dimk(B)dimk(C) = dimk(A).

3. B = ZA(C).

Proof. Consider the k-algebra Endk(VB), it is also central simple,178 hence A ⊗k
178 Since B is finite dimensional, we can pick
a basis for B over k and identify Endk(VB)
with Mdimk(B)(k), we have already seen
why the latter is a CSA over k.

Endk(VB) is a central simple k-algebra. Consider the maps f , g : B→ A⊗k Endk(VB)

defined by f (b) = b ⊗ 1 and g(b) = 1 ⊗ `(b). By the Skolem-Noether theorem,
these two maps can be conjugated into each other by an invertible element of A⊗k

Endk(VB), namely, there exists x ∈ (A ⊗k Endk(VB))
× such that f = xgx−1. In

particular, f (B) = xg(B)x−1 ⇔ B⊗ 1 = x(1⊗ `(B))x−1. Then, it is obvious that

ZA⊗kEndk(VB)
(B⊗k 1) = xZA⊗kEndk(VB)

(1⊗k `(B))x−1.

Using the previous lemmas, we can compute that the L.H.S. is ZA(B)⊗k Endk(VB)

and the R.H.S. is a conjugate of A⊗k r(Bop), we infer that179 179 We use the fact that conjugation by x is a
k-algebra homomorphism.

C⊗k Endk(VB) ∼= A⊗k r(Bop), as k-algebras.

We are now ready to prove each part of the statement using this isomorphism.

1. Because the R.H.S. is simple, the L.H.S. also is and it is clear that C must also
be simple as any non-trivial two-sided ideal of C would give rise to a non-trivial
two-sided ideal of C⊗k Endk(VB).

2. By computing the dimensions of both sides, we get

dimk(C) · dimk(B)2 = dimk(A) · dimk(B).

The result then follows by dividing by dimk(B).

3. Clearly B centralizes C, so B ⊆ ZA(C) and part two of the theorem applied to C
implies that dimk(C)dimk(ZA(C)) = dimk(A) and, so dimk(B) = dimk(ZA(C))
and we conclude B must equal ZA(C).
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Examples 221.

1. Let A = Mn(D) where D is a central division algebra over k and B = Mn(k). Then
we claim ZA(B) = D · In (the scalar diagonal matrices). Clearly DIn ⊆ ZA(B)
and the double-centralizer theorem implies DIn = ZA(B) by dimensionality:
dimk(D)dimk(Mn(k)) = dimk(Mn(D)).

2. Let A = Mn(k) and B a field extension of k of degree n. We can view B as a
subalgebra of Mn(k) by choosing a basis e1, . . . , en of B over k.180. This time,ZA(B) 180 There is a natural map B 7→ Endk(B) =

Mn(k) that sends b ∈ B to the left multipli-
cation by b.

clearly contains B because B is a field and commutes. The double centralizer yields
B = ZA(B) by dimensionality again.

3.

There are two important complementary settings where theorem 220 is used.

Corollary 222. In the same setting as the theorem, if B is central simple over k, then
B⊗k C = A.

Proof. Since B is central simple and C is simple, B⊗k ZA(B) is simple and there is
a natural homomorphism B⊗k C → A sending b⊗ c to bc.181 Because the L.H.S. is 181 Note that this is well-defined precisely

because C commutes with B. It is a module
homomorphism by k-bilinearity and algebra
homomorphism by commutation of B and
C.

simple, the map is injective and by dimension counting (recall part ii of the double
centralizer), it must be an isomorphism.

Corollary 223. In the same setting as the theorem, if B is a maximal abelian subfield182 of 182 We mean a subalgebra that is a field.

A, then C = B and dimk(B)2 = dimk(A).183 183 This is one way to see that the dimension
of a CSA is a square, but it requires the
existence of a maximal abelian subfield.
Finite dimensionality guarantees that, but it
is not true in the general case.

Remark 224. Note that the last corollary does not necessarily apply here. For in-
stance if A is non-commutative, we cannot have B⊗k B = A because the L.H.S. is
commutative.

Proof. It is obvious that C contains B because B is commutative. Moreover, if C
contains an element not in B, adjoining it to B yields a bigger field contradicting the
maximality of B, thus we conclude B = C. The result for the dimension is a trivial
application of the double centralizer.184 184 After noting that B is simple because it is

a field.
Example 225. Let A = Mn(k), it contains many subfields of degree n and we claim
that if E is a field of degree n over k, then E is isomorphic to a subfield of A. To
see this, fix a basis for E, and recall that Endk(E) ∼= Mn(k), so the embedding185 185 It sends e to the left multiplication by e.

` : E→ Endk(E) extends to an embedding into Mn(k).

Corollary 226. If D is a division algebra over k, then any maximal subfield F of D satisfies
[F : k]2 = [D : k].

Corollary 227. Let A be a CSA over k and K be a subfield, then the following are equivalent:

1. K = ZA(K).

2. [K : k]2 = dimk(A).
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3. K is a maximal commutative subalgebra of A.

Proof. Easy application of the earlier results.

Classification of Central Simple Algebras

As a first goal, we would like to classify all the central division algebras over a given
field k (up to isomorphism). We will denote DA(k) to be the set of central division
k-algebras modulo the isomorphism relation and denote CSA(k) to be the set of
central simple k-algebras modulo the isomorphism relation. Note that the former is
contained in latter and by Wedderburn’s classification we can write

CSA(k) = {Mn(D) | D ∈ DA(k), n ≥ 1}.

We first consider the case when k is finite.
A result in field theory states that finite fields are completely determined, up to

isomorphism, by their cardinality. More precisely, if n ∈ N, p is prime and q = pn,
then there exists a unique field Fq of size q. In particular finite field extensions of
finite fields are isomorphic if and only if they have the same dimension over the
base field. To classify finite division ring, we need a general group theoretic lemma.

Lemma 228. If G is a finite group and H is a proper subgroup, then G 6= ∪x∈GxHx−1.

Proof. Suppose this were true, then we could also range the union over representa-
tives of G/H and preserve equality.186 This union involves |G|/|H| subsets of size 186 This is because if xH = yH, then

xHx−1 = yHy−1.|H|, but each subset is not disjoint (they all contain the identity), hence the size of
the union is strictly less than |G|.

Theorem 229 (Wedderburn). Any finite division ring is commutative, i.e.: it is a field.

Proof. Let D be a finite division ring and k = Z(D) its center. Since k is a com-
mutative division ring, it is a field and by finiteness, it is isomorphic to Fq for q a
power of a prime. Let K be a maximal commutative k-subalgebra of D,187 it is a 187 The existence of K is guaranteed by the

finiteness of D.field extension of k. By corollary 223, we have dimk(K)2 = dimk(D) and all other
maximal commutative subalgebras must be isomorphic to K188 and hence conjugate 188 The equation for dimension yields

that all such subalgebras have the same
dimension as K and we saw that this imply
they are isomorphic when over finite fields.

(by Skolem-Noether). Therefore, since every α ∈ D generates a commutative algebra
k[α] over k, we infer that k[α] is contained in a maximal commutative algebra of the
form xKx−1 for some x ∈ D×. We conclude that

D =
⋃

x∈D×
xKx−1 and furhtermore D× =

⋃
x∈D×

xK×x−1.

This contradicts the previous lemma if K× is a proper subset of D×, so we conclude
D = K and hence D is a field.

Corollary 230. If k is a finite field and A is a finite dimensional CSA over k, then A ∼=
Mn(k) for some n.189 189 Might also be true if A is not finite

dimensional.
Next, we study the case when k = R.
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Theorem 231 (Frobenius). If D is a division algebra over R, then D is either isomorphic
to R, C or H.

Proof. If D is commutative, then it follows from the fundamental theorem of algebra
that D is either R or C.190 190 Recall that we are only considering

finite dimensional algebras, and along with
commutativity, it implies D is an algebraic
extension of R.

Otherwise, the center of D has to be equal to R since there are no finite dimen-
sional division algebra over C.191 Let E be a maximal commutative subalgebra of D,

191 Recall the argument in corollary 172.then E is a non-trivial field extension of R, so E = C and by corollary 223, we have
dimR(D) = [E : R]2 = 4.

Observe that D is a two dimensional C vector space under left multiplication
and for any w ∈ D − C, {1, w} forms a C-basis for D. We proceed to choose a
particular w that will help us understand the multiplication in D. Consider the maps
f , g : C → D where f = id192 and g = z 7→ f (z̄). By Skolem-Noether, ∃w ∈ D× 192 More precisely, f is the isomorphism

C ∼= E ⊆ D.such that wzw−1 = z̄ for any z ∈ C and we infer that w does not commute with C,
hence it is in D−C and is independent of 1. Thus, we got a basis and193 193 The equalities are as C vector spaces.

D = C1 + Cw = {z1 + z2w | z1, z2 ∈ C}.

Notice that since wz = z̄w for any z, we have

w2z = wz̄w = zw2,

therefore w2 commutes with C. We infer that w2 commutes with all of D,194 namely, 194 It obviously commutes with w.

w2 ∈ Z(D) = R. Furthermore, we claim that w2 < 0. Suppose otherwise, then there
would exists r ∈ R such that r2 = w2, or equivalently, (w − r)(w + r) = 0. This
would imply D has zero-divisors because D−C 3 w 6= r,−r and contradict the fact
that D is an integral domain.

Finally, replacing w by λw with λ ∈ R will not change its properties (because R

commutes with D), so we can assume w2 = −1. We conclude that the multiplication
in D is now completely determined: for any z1, z2, y1, y2 ∈ C,

(z1 + z2w)(y1 + y2w) = z1y1 + z1y2w+ z2ȳ1w+ z2ȳ2w2 = z1y1− z2ȳ2 +(z1y2 + z2ȳ1)w.

Hence, there can only be one non-commutative division algebra over R.195 195 Indeed, if D and D′ are two non-
commutative division R-algebras, then
we find the distinguished elements w ∈ D
and w′ ∈ D′ and what we have show is
that the map sending 1D to 1D′ and w to w′

(extend it with C-linearity) is an R-algebra
isomorphism.

Although the two previous settings (k finite and k = R) resulted in a simple
classification, this is not always the case and we now turn to the more general
question.

Recall from corollary 209 that CSA(k) is closed under the tensor product over k,
and this operation is associative and commutative. Moreover, since tensoring with
k does not change the structure, i.e.: A⊗k k ∼= A, we can see CSA(k) as a monoid
under the operation ⊗k.

Remark 232. The set T(k) = {k, M2(k), M3(k), . . . , } is submonoid of (CSA(k),⊗k)

and is isomorphic to (N∗, ·). We use it in the followin definition.

Definition 233 (Brauer group). We say that two elements A1 and A2 of CSA(k)
are Brauer equivalent if ∃n1, n2 ≥ 1 such that Mn1(A1) ∼= Mn2(A2), or equivalently
A1 ⊗ Mn1(k) ∼= A2 ⊗ Mn2(k). The Brauer group of k, denoted Br(k) is the set of
Brauer equivalence classes in CSA(k), i.e.: Br(k) ∼= CSA(k)/T(k).
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Remark 234. Wedderburn’s classification implies that the following composite is a
bijection196: 196 Surjectivity is obvious because every

class contains at least one CSA which
can be written as Mn(D) for some central
division algebra and it follows that this
also class contains D. The uniqueness of
the decomposition implies that if D and
D′ are central division k-algebras such that
Mn(D) = Mm(D′) for some n, m ∈ N, then
D = D′ and n = m, so the map is injective.

DA(k) ↪→ CSA(k)→ Br(k) = D 7→ D 7→ [D] = {Mn(D) | n ≥ 1}.

In other words, every Brauer equivalence class has a unique central division algebra.

Examples 235. 1. If k is finite, then theorem 229 shows Br(k) = {k}.

2. Frobenius’ theorem implies Br(R) = {R, H}. Moreover, we can infer from the
group structure that [H]⊗ [H] = [R] and this implies (by comparing dimensions)
that H⊗R H ∼= M4(R).

3. If k is algebraically closed, Br(k) = {k}.197 197 Recall corollary 172.

4. Compared to the previous examples Br(Q) is way more complex, it is infinite and
in fact not even finitely generated.

The next proposition justifies the name "Brauer group".

Proposition 236. The operation ⊗k makes Br(k) into an abelian group.

Proof. We just need to argue that any element [A] ∈ Br(k) has an inverse.198 198 Because Br(k) is already the quotient of a
commutative monoid, hence a commutative
monoid.

We claim that [Aop] is that inverse. Recall from example 210 that A ⊗k Aop ∼=
Endk(A) ∼= Mn(k) and this clearly implies [A]⊗ [Aop] = [k].

Proposition 237. The assignment k 7→ Br(k) is a functor Fields AbGrps.

Proof. More precisely, if k→ K is a morphism of fields, then we get a map Br(k)→
Br(K) sending [A] to [A⊗k K].

Definition 238. The relative Brauer group of an extension K/k is the kernel of the
map defined above. We denote it Br(K/k).

Proposition 239. The Brauer group of k is the union of the relative Brauer groups of all
finite extensions K > k, i.e.: Br(k) =

⋃
[K:k]<∞ Br(K/k).

Proof. Given X in Br(k), let D be the unique central division algebra in X. We want
to find a finite extension K/k such that D ∈ Br(K/k), that is D⊗k K ∼= Mn(K). If K
is any maximal subfield of D, we know that n2 = dimk K2 = dimk D.199 We claim 199 Since D is a division algebra, any com-

mutative subalgebra is a subfield. Hence K
is a maximal commutative subalgebra and
we can use corollary 227.

that for such a K, D⊗k K ∼= Mn(K).
View D as a K-vector space VD via right multiplication, it has dimension n, and

observe that D acts on VD K-linearly by left multiplication. Furthermore, since both
actions clearly commute and right and left multiplication by k coincide, we obtain
a k-algebra homomorphism200 D⊗k K → EndK(VD) = Mn(K) that sends d⊗ λ to 200 Checking the properties is left as an

exercise.v 7→ dvλ. It is enough then to observe that the dimensions of both sides is n3 because
the L.H.S. is simple, hence the map must be an isomorphism.

Definition 240. A field K/k is said to split a CSA A if A⊗k K ∼= Mn(K).
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Example 241. Let k = Q and D = Q(i, j, k).201 Every maximal subfield is quadratic 201 The relations between i, j, k are as in H

but we restrict the coefficients to lie in Q.and it is easy to construct them because for any x ∈ D−Q, Q(x) is a field of degree
two over k. For instance, it is easy to see that Q(i) ∼= Q(j) ∼= Q(k) because i, j and k
all satisfy the same minimal polynomial, namely x2 + 1.

A less obvious fact is that Q(i + j) ∼= Q(
√
−2). To see this, we note that202 202 Recall example 30 to compute the norms

and traces.

Nm(i + j) = Nm(
√
−2) = −2 and Tr(i + j) = Tr(

√
−2) = 0.

We can infer that no field of the form Q(
√

d) for d > 0 is in Q(i, j, k). Moreover R

cannot arise because it is infinite dimensional, thus D⊗Q R ∼= H is not isomorphic
to M2(R).203 203 But we already knew that because H is a

division algebra and M2(R) is not.The proof of proposition 239 implies that all these fields are examples of splitting
fields for D.

The next (and last) theorem of this class is motivated by the study of k-linear
representations. An important result in representation theory is the decomposition
of the group ring for a finite group G. In the well-studied case k = C, we have

C[G] ∼= ⊕t
i=1Mdi

(C),

where t is the number of distinct irreducible representations of G and d1, . . . , dt are
their dimensions. We can read off a lot of information from this.

1. By comparing the dimensions, we get |G| = d2
1 + · · ·+ d2

t .

2. The number of conjugacy classes of G is t.

Proof. We will take the center on both sides. On the R.H.S. we obtain a copy
of C for each summand and hence the center is Ct. On the L.H.S., we note that
the center is precisely the elements which have the same coefficients in front of
elements of the same conjugacy class. Indeed, if a ∈ Z(C[G]), we can decompose
its sum in conjugacy classes and write

a = ∑
X∈Conj(G)

∑
g∈X

ag · g.

Then, since for any h ∈ G, hah−1 = a, we have

a = ∑
X∈Conj(G)

∑
g∈X

ag · hgh−1,

and we infer204 that the coefficients of all elements of a single conjugacy class 204 Also using the fact that for any g1, g2 ∈
G, there exists h ∈ G such that hg1h−1 = g2
if and only if g1 and g2 are in the same
conjugacy class.

must be the same. It is obvious that the dimension of Z(C[G]) (t) is the number
of conjugacy classes.

In order to attain more generality, we can ask what happens if C is replaced
by a field k with char(k) - |G|.205 Since the study of C-linear representations is so 205 We saw in Mascke’s theorem that

this restriction on k ensures that k[G] is
semisimple, namely k[G] = A1 ⊕ · · · ⊕ As
where the Ai’s are simple.

well understood, we use it to understand Q-linear representations in the following
examples.
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Examples 242.

1. Let p be a prime and G = Z/pZ. Since G is abelian, it has |G| = p conjugacy
classes and we obtain the decomposition

C[G] ∼= C⊕
p
· · · ⊕C.

Another way to obtain this decomposition is to view Z/pZ as the set {1, σ, . . . , σp−1}
and then we clearly have206 206 The polynomial xp − 1 splits into

irreducible linear factors and then we can
apply the Chinese remainder theorem.

C[G] ∼= C[x]/(xp − 1) ∼= ⊕p
n=1C[x]/

(
x− exp

(
2πin

p

))
.

However, xp − 1 does not split in Q and instead we get the decomposition

Q[G] ∼= Q[x]/(xp − 1) ∼= Q[x]/(x− 1)(xp−1 + · · ·+ x + 1) ∼= Q⊕Q(ζ),

where ζ = exp
(

2πi
p

)
.207 207 Note that both summands are field and

in particular they are simple, thus, we
found the decomposition on Q[G].

2. Let Q be the quaternion group, we know from computing the character table208

208 Here is the character table for Q.
We only use the dimension of the
representations (namely the first col-
umn) to obtain the decomposition.

1 −1 i[2] j[2] k[2]
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

of G that
C[G] = C⊕C⊕C⊕C⊕M2(C).

By inspecting the two-dimensional representation, we find that Q is realized as a
subgroup of GL2(C) where all the traces are rational, thus one might wonder if
we can realize Q as a subgroup of GL2(Q). The answer is negative.

In decomposing Q[Q], we trivially get the first four terms209, but the last term is
209 The one-dimensional C-representations
are also Q-representations.

(for now) unknown:
Q[Q] ∼= Q⊕Q⊕Q⊕Q⊕ D.

We know that dimQ(D) = 4 and D must be central because if its center were
bigger than Q, then the dimension over that would be at least four (it has to
be a square and it cannot be one because Q[G] is not commutative)and hence
the dimension over Q would be too big. We can see that D = Q(i, j, k) ⊆ H by
defining a map φ : Q[Q]→ D that sends a[x] to ax for any x ∈ Q.

We conclude with the following proposition.

Proposition 243. The two-dimensional irreducible representation of Q can be realized over
K/Q if and only if K splits Q(i, j, k).210 210 It is clear thata K[Q] = Q[Q]⊗Q K. Using

the decomposition above we see that the
decomposition of K[Q] will be composed of
matrix rings if and only if D⊗Q K.

This proposition in turns motivates the following question which we answer right
away.

Question 244. Given a CSA A over a field k, how can we understand the collection of all
splitting fields for A?

Theorem 245. Let X ∈ Br(k), then X belongs to Br(K/k) if and only if there exists a CSA
A ∈ X such that K is contained in A and [K : k]2 = dimk(A).
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Proof. (⇐) If ∃A with these properties, then we can repeat the argument in proposi-
tion 239 to conclude K splits A.

(⇒) Suppose that K splits A, namely A⊗k K = Mn(K). We can apply the opposite
functor and obtain Aop ⊗k K ∼= Mn(K).211 There is a natural embedding of Aop ⊗k 1 211 This holds because matrix algebras over

a field are isomorphic to their opposites
(by taking transposes for instance) and the
opposite of K is K.

in the L.H.S. and composing with the injective map described above,212 we get an 212 It is injective by simplicity of Aop ⊗k K
and non-triviality.embedding Aop ⊗k 1→ Mn(K) = B, where B is a CSA over k.

Let C = ZB(Aop⊗k 1), the double centralizer theorem implies that C is simple be-
cause B is CSA and Aop is simple.213 It also states dimk(C)dimk(Aop) = dimk(B) = 213 We dropped the tensor with 1 because it

is unnecessary.([K : k]n)2, and since dimk(Aop) = n2, we infer dimk(C) = [K : k]2. It remains to
show K sits inside C and C ∈ [A].

The first part is true because

1⊗k K ⊆ ZAop⊗kK(Aop ⊗k 1) ⊆ ZB(Aop) = A.

The second part is true because214 214 In general if A ⊆ B are both CSA over
k, then C = ZB(A) commutes with A and
A ⊗k C → B. The L.H.S. is simple over
k by the double centralizer, so the map is
injective and hence an isomorphism by
dimension counting (we can use the double
centralizer for that as well).

C⊗k Aop ∼= B = M[K:k]n(K),

thus C is Brauer equivalent to the inverse of Aop which is A.

Corollary 246. If K splits a central division algebra D and dimk(D) = d2, then d | [K : k].
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Review Questions

Exercise 247. Consider the ring Z[α] where α = 1+
√
−23

2 and its ideal I = (2, α).
Show that I and I2 is not principal by I3 is. This ring is the integral closure of Z in
Q(
√
−23).

Proof. Note that α is a root of x2 − x + 6. To show that I is not principal, we need
to show that 2 and α have no common divisor but one and that one is not in I. If
we write 2 = uv, then taking norms on both sides yields 4 = Nm(u)Nm(v), so
Nm(u) = Nm(v) = 2 because the norms cannot be one.

However, we observe that Nm(x + yα) = x2 + xy + 6y2 = (x + 1
2 y)2 + 23( y

2 )
2, we

conclude that the equation above have no solutions. Thus, the only divisors of 2 are
±1 and ±2. Since ±2 does not divide α, the only common divisor is one.

Finally, we claim that I 6= (1), namely, 2R + αR 6= R. An element of the L.H.S. is
of the form 2u + αv and its norm is

(2u + αv)(2ū + ᾱv̄) = 4uū + 2ᾱuv̄ + 2αūv + 6vv̄.

This belongs to 2Z, hence 1 /∈ I.
For the second part, we write I2 = (4, 2α, α2) = (4, 2α, α − 6). Since we can

write 2α = 2(α − 6) + 3 · 4, we obtain I2 = (4, α − 6) = (4, α − 2). We claim that
R/I2 ∼= Z/4Z because a + bα 7→ a + 2b is surjective and has I2 as its kernel. We
conclude that I 6= (1).

Furthermore, we find the divisors of 4. If 4 = uv, then taking norms yields
Nm(u)Nm(v) = 16, but no elment has norm two (why?), so we get Nm(u) =

Nm(v) = 4. Using the calculations above, we must find a solution of 4 = ( a
2 )

2 +

23( b
2 )

2 or equivalently of 16 = a2 + 23b2. Hence the only divisors of 4 are ±1, ±2
and ±4. But the only divisors of α− 2 are ±1 and hence I2 cannot be principal.

When we calculate I3, we get

(2, α)(4, α− 2) = (8, 2α− 4, 4α, α2 − 2α) = (8, 2α− 4, 4α, α + 6).

We can remove both terms in the middle, so I3 = (8, α − 2) and we notice that
Nm(−2 + α) = 8, thus −2 + α divides 8 and hence I3 = (α− 2) is principal.

Exercise 248. Prime ideals of Dedekind domain are locally principle (because any
localization is a DVR). We would like to understand how to find the generator of
the localization of an ideal.

Fact 249. If I is a prime ideal in a Dedekind R. Let R = Z[α] as above and p = (2, α) is a
prime ideal because R/p = Z/2Z. What is a generator for pRp. If we try to divide 2 by α,
we get

2
α
=

2ᾱ

αᾱ
=

2ᾱ

6
=

ᾱ

3
,

thus 2 = α ᾱ
3 implying α divides 2, thus (α) = pRp.

Note that this will not work if we tried dividing α by 2. In fact, R/(α) = Z/6Z and
R/(2) = Z/2Z×Z/2Z because we can write R = Z[x]/(x2 − x + 6), so R/(2) =

Z/2Z[x]/(x(x− 1)) ∼= Z/2Z×Z/2Z.
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Exercise 250. If R = C[x], what is the spectrum of R?.

Proof. As a set: it is the set of prime ideals of C[x] which are precisely (x − a)
for a ∈ C and (0). So, we can naturally identify Spec(R) with C ∪ {∗}, where ∗
represents the generic point (0).

As a topological space: Recall that the closed sets are V(I) = {p ∈ Spec(R) |
p ⊃ I} and that any I is generated by finitely many polynomials which will have
finitely many common roots. If I = ( f1, . . . , fn) with common roots a1, . . . , am, then
V(I) = {a1, . . . , am}. If I = 0, then V(0) = C∪{∗}. Hence, the open sets are co-finite
sets containing {∗} together with ∅.

What is the sheaf O on Spec(R). Let US = Spec(C[x])− {a1, . . . , am}, then it is
natural set O(US) = C[x][ 1

x−a1
, . . . , 1

x−am
] = C[x][ 1

f ] where f = (x− a1) · · · (x− an).
What is the stalk? of O at a ∈ Spec(R)? We have Oa = lim−→U⊆Spec(R),a∈U

O(U) =

{ q(x)
p(x) | q(x), p(x) ∈ C[x] and p(a) 6= 0}. For the generic point, O∗ is the inverse

limit of every open sets which are non-empty which will yield the fraction field.

Exercise 251. In the following setting: If L/K is Galois, with G = Gal(L/K) and

OL L

OK K

pCOK ⊂ K, and pOL = p
e1
1 · · · p

er
r . Show that G acts transitively on the set of primes

in the decomposition.

Proof. Assume not, then after reordering, we can assume that p1 6= σp2 for all σ ∈ G.
Therefore {σp2}σ∈G is a finite collection of distinct primes not containing p. Using
the CRT, we can find a ∈ OL such that a ∈ p1 and a ≡ 1 (mod σp2) for all σ ∈ G.

Exercise 252. Let V = Mm×n(k), then Mm(k) acts naturally on V by left multiplica-
tion. Then, ZEndk(V)(Mm(k) = Mn(k)

Proof. Mn(k) also acts on V by right multiplication but less naturally, i.e.: it sends A
to the map (M 7→ MAt). This clearly commutes with Mm(k) and then we just have
to check dimensionality (using double centralizer).

Exercise 253. Suppose that V is a finite dimensional vector space of dimension N
and A ⊆ Endk(V) and A ∼= Mn(k). Then, n | N and B = ZEndk(V)(A) ∼= MN/n(k).

Proof. The double centralizer implies B is simple and B is central over k. We claim
there is a natural map A⊗ B → Endk(V) = a⊗ b 7→ a · b. Since A and B are CSA
over k, then A⊗k B is also a CSA and then by dimension count and simplicity, we
find it is an isomorphism. We conclude with the Brauer equivalence and the fact
that Endk(V) = M(mn)2(k).
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