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1 Measure Space. Probability Space

1.1 Review of Probability Space

The standard notation for a probability space is (Ω,F ,P): random trials. The components of this tuple
are given by:

1. Ω: this is the sample space. It’s the collection of all possible outcomes.

ω ∈ Ω is a sample point.
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2. F : this is a σ-algebra: this is a collection of events. For A ∈ F , we say that A is an event. Hence,
A ⊆ Ω.

3. P: this ia a function defined on the σ-algebra F :

F → [0, 1]

A ∈ F 7→ P (A) ∈ [0, 1].

This is called the probability of the event A.

Example 1. Flip a fair coin. Then,

Ω = {H,T}.
F = {{H}, {T}, {H,T}, ∅}.

Then, the probabilities are given by:

P (H) =
1

2
, P (T ) =

1

2
, P ({H,T}) = 1, P (∅) = 0.

1.2 Measure Theory

Measure theory is the foundation of modern probability theory. We will define things for a general measure
space (S,Σ, µ) to replace (Ω,F ,P).

Definition 1 (Algebra). Let S be a set. A collection Σ0 of subsets of S is called an algebra if:

1. S ∈ Σ0.
2. (Closed Under Complements): A ∈ Σ0 ⇒ Ac = S \A ∈ Σ0.
3. (Closed Under Finite Unions): ∀ n ∈ N, if A1, ..., An ∈ Σ0, then,

n⋃
j=1

Aj ∈ Σ0.

Remarks: If Σ0 is an algebra of S, then:

1. ∅ ∈ Σ0 (by (1) and (2)).
2. if A,B ∈ Σ0, then A ∪B, A ∩B, A \B, A△B, B \A ∈ Σ0.
3. for all n ∈ N, A1, ..., An ∈ Σ0 ⇒

⋂n
j=1Aj ∈ Σ0 (Closed Under Finite Intersections).

Definition 2 (σ-algebra). A collection Σ of S is a sigma algebra if:

1. Σ is an algebra.
2. (Closed Under Countable Unions): A1, A2, A3, ... ∈ Σ ⇒

⋃∞
j=1Aj ∈ Σ.

Note that if Σ is a sigma algebra, then Σ satisfies (1)-(6), and:

A1, A2, ... ∈ Σ ⇒
∞⋂
j=1

Aj ∈ Σ.

Very often at this stage, if we want to prove something, we need to go back to the definitions. So at this
stage, there will be lots of sets and logic.

Definition 3 (Measurable Space). The pair (S,Σ) is ameasurable space. A set A ∈ Σ is ameasurable
set.
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This means that there is a chance that it will turn measurable.

Definition 4 (σ-algebra generated by C). Let C be a collection of subsets of S. The sigma algebra
generated by C, denoted by σ(C), is the smallest σ-algebra which is a superset of C. So:

1. C ⊆ σ(C).
2. if Σ′ is a σ-algebra containing C, then σ(C) ⊆ Σ′.

Proposition 1. (Properties of σ-algebra)

1. if C is a σ-algebra, then σ(C) = C.
2. σ(σ(C)) = σ(C).
3. If C1 ⊆ C2, then σ(C1) ⊆ σ(C2).

Proposition 2. Another way of getting the smallest σ-algebra:

σ(C) =
⋂

{Σ | Σ is a sigma algebra and C ∈ Σ} (1)

We have the following fact: for an index set I, if {Σα | α ∈ I} is any collection of σ-algebras of subsets
of S, then

⋂
Σα remains a σ-algebra, i.e. , the intersections of σ-algebras are still σ-algebras.

Exercise: prove Proposition 1 and Fact.

Example 2. Let A,B ⊆ S. Then, what is σ({A})?

Then, σ({A}) = {A,Ac, ∅, S}. This means that these are the ONLY 4 sets which are measurable with
respect to σ({A}). Nothing else is measurable.

Exercise: find σ({A,B}).

What does a σ-algebra mean for us? A σ-algebra contains the collection of events, so it tells me
the information available to me (from the point of view of probability). If you’re not in the σ-algebra,
then you’re not measurable with respect to the σ-algebra.

Example 3 (Borel σ-algebra). Take S = R. Then, B(R) is the Borel Sigma Algebra, which is defined
as:

B(R) = σ({open subsets of R}) (2)

This applies to any topological space. So, an equivalent condition for R is:

B(R) = σ({]a, b[ | a < b, a, b ∈ R}) (3)

If B ∈ B(R), then B is called a Borel Set.

1. B(R) = σ({]a, b] | a < b, a, b ∈ R}).
2. B(R) = σ({[a, b[ | a < b, a, b ∈ R}).
3. B(R) = σ({[a, b] | a < b, a, b ∈ R}).
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4. B(R) = σ({]a,∞[ | a ∈ R}).
5. B(R) = σ({[a,∞[ | a ∈ R}).

and so on... the message is that the generating class which gives us B(R) is not unique. Let’s see how
a proof of showing some of them are equivalent works. Let’s show that Σ],[ = Σ],]. For all a, b ∈ R, for
a < b, how do I construct ]a, b[? We push ], ] out from the inside:

]a, b[=

∞⋃
n=1

]
a, b− 1

n

[
This shows the inclusion, Σ],[ ⊆ Σ],]. Similarly, if I want to reach ]a, b], we take:

∞⋂
n=1

]
a, b+

1

n

]
(4)

This shows that Σ],] ⊆ Σ],[. Also, don’t forget that for all x ∈ R, {x} ∈ B(R).

Definition 5 ( π-system). Let S be a set. A collection I (of subsets of S) is called a π-system if for all
A,B ∈ I, A ∩B ∈ I.

So, a π-system is a collection which is closed under intersections.

Definition 6. Let S be a set. A collection D (of subsets of S) is called a d-System if:

1. S ∈ D.
2. (Closed Under Taking Differences): if A,B ∈ D and if A ⊆ B, then B \A ∈ D.
3. (Closed Under Monotonic Limits): if An ∈ D for n ≥ 1, (some countable sequence of sets),

and if An ↑ A, then A ∈ D.

Definition 7 (Set-Theoretic Limits). “An ↑ A” means that:

• Monotonic Increasing: An ⊆ An+1 for all n ∈ N.
•
⋃∞

n=1An = A.

“Bn ↓ B” means that:

• Monotonic Decreasing: Bn+1 ⊆ Bn

•
⋂∞

n=1Bn = B.

The reason we care about π-systems and d-Systems is that we can separate the properties of B(R)
into a π-system and a d-system. This will let us further decode a σ-algebra.

Lemma 1. Let Σ be a collection of subsets of S. Then, Σ is a σ-algebra ⇐⇒ Σ is a π-system and a
d-system

Proof. “⇒”: trivial.
“⇐”: we verify that Σ is a σ-algebra:

1. S ∈ Σ ✓.
2. if A ∈ Σ ⇒ Ac = S \A ∈ Σ (d-System) ✓.
3. if An ∈ Σ for n1, we need to check that

⋃∞
n=1An ∈ Σ: this is the one that will need some work.

Set Bn :=
⋃n

j=1Aj . Then, Bn forms an increasing sequence, and Bn ∈ Σ for all n ∈ N since Σ is
a π-system and a d-System and by DeMorgan’s Law. But, by (III) of a π-system,

⋃∞
n=1Bn ∈ Σ.

But,

∞⋃
n=1

Bn =
∞⋃
n=1

An ∈ Σ.
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Theorem 1 (Dynkins π-d Lemma). Suppose that I is a π-system of subsets of S and d(I) is the π-system
generated by I (i.e., d(I) is a d-system and if d is another d-system such that I ∈ d, then d(I) ⊆ D).
Then, d(I) = σ(I).

What this theorem is saying is the following: if you start with a π-system generating class, all you
need is a d-system and you’ll automatically get a σ-algebra.

Proof. We observe that it is sufficient to show that d(I) is a π-system. Why?

1. By the lemma, we know that d(I) is a σ-algebra. Hence, we get the inclusion σ(I) ⊆ d(I).
2. Since σ(I) is certainly a d-system, d(I) ⊆ σ(I).

So the general sketch of the proof is: we start with a π-system, generate a d-system, and then get a π-
system. The proof technique we will use, which is standard in set theory, is the good set principle: we
collect all the items with the property that we want, argue that this collection satisfies a certain property,
then show that this collection is actually the whole set. This proof will require two stages.

First, we set D1 := {B ∈ d(I) | B ∩A ∈ d(I) ∀A ∈ I}. This will be our “good set.”
Claim: D1 is a d-system. To check:

1. S ∈ D1 ✓: since A ∈ I, A ∩ S = A ∈ d(I).
2. A1, A2 ∈ D1, A1 ⊆ A2, we want to show that A2 \A1 ∈ D1 ✓: because for all A ∈ I:

A ∩ (A2 \A1) = (A2 ∩A)︸ ︷︷ ︸
∈d(I)

\ (A1 ∩A)︸ ︷︷ ︸
∈d(I)

∈ d(I) since d(I) is a d-system.

3. For An ∈ D1, for n ≥ 1 and An ↑ A, we need to show that A∞ ∈ D1 ✓: because for all A ∈ I,

An ∩A︸ ︷︷ ︸
∈d(I)

↑ A∞ ∩A.

This shows that A∞ ∩A ∈ d(I), which shows that A∞ ∈ D1.

Hence, we have proven that D1 forms a d-System, and certainly I ⊆ D1. But, based on how D1 is
defined, we get that D1 ⊆ d(I). Hence, d(I) = D1. This means that for all B ∈ d(I) and for all A ∈ I,
B ∩ A ∈ d(I). Intermediate step complete! We need to now replace for all A ∈ I with for all A ∈ d(I).
So we do the good set principle once more. Set:

D2 := {C ∈ d(I) | B ∩ C ∈ d(I) ∀ B ∈ d(I)}.

From our intermediate step conclusion, we know that I ⊆ D2. Next, we need to verify that D2 is a
d-System. Exercise: go through the three conditions of a d-System.

Since D2 is a d-system and I ⊆ D2, this shows that d(I) ⊆ D2. Hence, d(I) = D2. Now we can
conclude that ∀C ∈ d(I), for all B ∈ d(I), B ∩ C ∈ d(I). Hence, d(I) is a π-system, which is what we
wanted to show.

This idea is very important in the study of measures. When constructing a measure, we only look at
the π-system which generating the σ-algebra, which is why this theorem is important.

Definition 8 (Additive). Let S be a set, Σ0 be an algebra of subsets of S. Let µ0 be a non-negative set
function defined on Σ0, i.e.,

µ0 : Σ0 → [0,∞].

We say that µ0 is additive if:
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1. µ0(∅) = 0
2. ∀A,B ∈ Σ0 and A ∩B = ∅,

µ0(A ∪B) = µ0(A) + µ0(B).

We say that µ0 is countably additive if:

1. µ0(∅) = 0.
2. ∀An ∈ Σ0, for all n ≥ 1 such that Ai ∩Aj = ∅ if i ̸= j and

⋃∞
n=1An ∈ Σ0, we require:

µ0

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ0(An). (5)

Definition 9 (Measure). Let (S,Σ) be a measure space. If µ is a non-negative set function defined on Σ
and µ is countably additive, then µ is called a measure. The triple (S,Σ, µ) is called a measure space.

• If µ(S) < ∞, then µ is a finite measure.
• If µ(S) = 1, then µ is a probability measure.
• if there exists a sequence {Sn | n ≥ 1} ⊆ Σ such that

⋃∞
n=1 Sn = S and µ(Sn) < ∞ for all n ≥ 1,

then µ is σ-finite.

Remark. All measures we will discuss in this course will be finite or σ-finite.

• If N ∈ Σ such that µ(N) = 0, then we say that N is a null set.
• If a statement holds everywhere except on a null set, then we say that the statement is true almost
everywhere (a.e.) or almost surely (a.s.).

1.3 Properties of a Measure µ

Proposition 3 (Monotonicity). Let A,B ∈ Σ, A ⊆ B. Then, µ(A) ≤ µ(B).

Proof. Write B = A ∪ (B \A). Then, A ∩ (B \A) = ∅. By the additivity of µ:

µ(B) = µ(A) + µ(B \A) ⇒ µ(B) ≤ µ(A).

Caution! Do not take the difference, µ(B)−µ(A), because both µ(A) and µ(B) might be infinite. That
would be undefined.

Proposition 4 (Subadditivity). Let An ∈ Σ for all n ≥ 1. Then,

µ

( ∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An). (6)

Proof. Set B1 = A1, and:

Bn := An \

( ∞⋃
n=1

Aj

)
.

The Bn’s are disjoint, and Bn ⊆ An. So, by (Monotonicity), µ(Bn) ≤ µ(An) for all n ≥ 1. Furthermore,

∞⋃
n=1

Bn =
∞⋃
n=1

An.

Hence,

µ

( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn) ≤
∞∑
n=1

µ(An).



Math 587: Advanced Probability Fall 2021 Page 7

Note the other two properties we have:

• if An ∈ Σ and µ(An) = 0 for all n ≥ 1, then µ (
⋃∞

n=1An) = 0: the countable union of a null set is
again a null set.

• we also have finite subadditivity: if Σ0 is an algebra of subsets of S and µ0 : Σ → [0,∞] is additive,
then for all n ≥ 1, and for all Aj ∈ Σ0, we have:

µ0

 n⋃
j=1

Aj

 ≤
n∑

j=1

µ0(Aj).

Proposition 5 (Continuity from Below). If An ∈ Σ for all n ≥ 1 and An ↑, then,

µ

( ∞⋃
n=1

An

)
= lim

n→∞
µ(An).

Proof. Set B1 = A1, and Bn = An \An+1. The Bn’s are all disjoint, and

∞⋃
n=1

Bn =
∞⋃
n=1

An.

Hence,

µ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn) = lim
n→∞

∞∑
j=1

µ(Bj) = lim
n→∞

µ

 n⋃
j=1

Bj

 = lim
n→∞

µ(An).

Proposition 6 (Continuity from Above). If An ∈ Σ for all n ≥ 1 and An ↓ and µ(An) < ∞ for some
n ≥ 1, then:

µ

( ∞⋂
n=1

An

)
= lim

n→∞
µ(An).

Proof. We’ll show this through continuity from below. WLOG, we assume that µ(A1) < ∞. This implies
that µ(An) is finite for all n ∈ N (by monotonicity). So, starting from this property, things become finite.
Set Bn := A1 \An for all n ≥ 1. Then, Bn ↑ and

lim
n→∞

µ(Bn) = µ

( ∞⋃
n=1

Bn

)
= µ

( ∞⋃
n=1

(A1 \Bn)

)
= µ

(
A1 \

∞⋂
n=1

Bn

)
= µ(A1)− µ

( ∞⋂
n=1

Bn

)
.

Since everything is finite, write µ(Bn) = µ(A1)− µ(An). Then,

lim
n→∞

µ(An) = µ

( ∞⋂
n=1

An

)
.

We remark that in general, the assumption “µ(An) < ∞” for some n is necessary. E.g., if S = R,
An :=]n,∞[, then:

• µL(]n,∞[) = ∞. So, limn→∞ µ(An) = ∞.
• Since An ↓ ∅, µL (

⋂∞
n=1An) = 0.
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This is a contradiction.

Theorem 2. Given a set S and an algebra Σ0, assume that µ is a non-negative set function:

µ : Σ0 → [0,∞[,

is a set function (i.e., µ is non-negative and real-valued and µ is finitely additive. Then, µ is countably
additive ⇐⇒ µ is continuous at the empty set. To be continuous at the empty set means that if
An ∈ Σ and An ↓ ∅ then limn→∞ µ(An) = 0.

Proof. “⇒”: this is implied by continuity from above. The proof is exactly the same.
“⇐”: we go straight back to the definition. Take {Bn | n ≥ 1} ⊆ Σ0 such that Bi ∩ Bj = ∅ for all i ̸= j
and assume that B =

⋃∞
n=1 ∈ Σ0. Set An := B \

⋃n
j=1Bj . Clearly, An ↓ ∅. By continuity at the empty

set, limn→∞ µ(An) = 0. On the other hand, An ∩
(⋃n

j=1Bj

)
= ∅. Hence,

µ(B) = µ(An) + µ

 n⋃
j=1

Bj

 (finite additivity)

= µ(An) +

n∑
j=1

µ(Bj) (finite additivity) →︸︷︷︸
n→∞

0 +

∞∑
n=1

µ(Bn).

i.e.,

µ

( ∞⋃
n=1

Bn

)
==

∞∑
n=1

µ(Bn).

1.3.1 Existence and Uniqueness of Measure

Given a measure space (S,Σ) and two measures µ1 and µ2, we say that two measures are equal, µ1 = µ2,
if for all A ∈ Σ, µ1(A) = µ2(A) for all A ∈ I.

Theorem 3. Given a set S and a π-system I of subsets of S, let µ1 and µ2 be two measures on S,Σ :=
σ(I). Then, if µ1(S) = µ2(S) < ∞ and µ1(A) = µ2(A) ∀A ∈ I, then µ1 = µ2 on the whole σ-algebra.

Significance of this theorem:

• Only R-valued measures allowed.
• We can extend this to any σ-finite space by breaking the space down.
• µ1(S) = µ2(S) < ∞ allows us to apply the theorem to σ-finite measures.

Proof. This will use “good set principle.” Set:

D := {A ∈ Σ | µ1(A) = µ2(A)}.

Then, I ⊆ D, by assumption. We want to now show that D is a d-system. We check the properties.

1. S ∈ D is given.
2. If A,B ∈ D, A ⊆ B ⇒ B \A ∈ D. This follows from the additivity of measure and the finiteness of

it:

µ1(A \B) = µ1(B)− µ1(A)

= µ2(B)− µ2(A)

= µ2(B \A).



Math 587: Advanced Probability Fall 2021 Page 9

3. for An ∈ D, for all n ≥ 1, and An ↑ A, we need to check that A ∈ D. This follows from the
continuity from below property:

µ1(A) = lim
n→∞

µ1(An) = lim
n→∞

µ2(An) = µ2(A).

Hence, D = σ(I) = Σ.

We can see that the built in properties of d-Systems are compatible with measures ⇒ this is why
we can focus on π-systems. Having established the uniqueness of measure, we can now move onto the
existence of measures. We will briefly review the construction of the Lebesgue measure. We will use, but
not prove, the following key result.

Theorem 4 (Caratheodory’s Extension Theorem). Given a set S, suppose that Σ0 is an algebra and
µ0 : Σ0 → [0,∞] is countably additive. Then, there exists a measure µ defined on Σ = σ(Σ0) such that
µ(A) = µ0(A) for all A ∈ Σ.

This theorem tells us that we can extend a measure from Σ0 to Σ. Moreover, if µ0(S) < ∞, then such
an extension is unique.

Next, we will use Caratheodory’s Extension Theorem to construct λ = λLeb (the Lebesgue Measure
on (]0, 1],B(]0, 1])).

1. We need to define a candidate measure on an algebra of subsets.

Σ0 :=

{
F ⊆]0, 1] | F =

k⋃
i=1

]ai, bi] where k ∈ N, and 0 ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ ... ≤ ak ≤ bk ≤ 1

}

2. Define µ0 on Σ0: for

F =
k⋃

i=1

]ai, bi] ∈ Σ0,

then,

µ0(F ) :=

k∑
i=1

(bi − ai).

One can verify that µ0 is well-defined, i.e., if

F =
k⋃

i=1

]ai, bi] =
l⋃

j=1

]cj , dj ] ⇒
k∑

i=1

(bi − ai) =
l∑

j=1

(dj − cj).

One can also verify that µ0 is additive.
3. Now need to verify countable additivity: by the theorem, this means we need to check for continuity

of µ0 at the empty set.

Proof. Take Fn ∈ Σ0 with n ≥ 1 such that Fn ↓ ∅. The goal is to show that limn→∞ µ0(Fn) = 0.
To that end, assume that limn→∞ µ0(Fn) > 0. Then, there exists a δ > 0 such that µ0(Fn) ≥ δ for
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all n ≥ 1. For each n, choose Cn ∈ Σ0 such that Cn ⊆ Fn and µ0(Fn \ Cn) ≤ 2−(n+1)δ. Define
Kn :=

⋂n
j=1Cn. Then, Kn ↓ and for all m ≥ 1, by deMorgan’s Law,

Fm \Km =
m⋃

n=1

(Fm \ Cn).

Now, µ0(Fm \ Km) ≤
∑m

n=1 µ0(Fm \ Cn) ≤
∑m

n=1 µ0(Fn \ Cn) ≤ δ
∑m

n=1 2
−(n+1) ≤ δ

2 for all m ≥
1. The first inequality follows from finite subadditvity and the second inequality follows from
monotonicity. Since µ0(Fm) > δ and for all m ≥ 1, µ0(Km) ≥ δ

2 for all m ≥ 1.

⇒ ∃ xm ∈ Km ∀m ≥ 1

⇒ {xm} ⊆ C1 (compact)

⇒ ∃ {ml | l ≥ 1} s.t. xml
→ x∞ as l → ∞.

For every n, when l is sufficiently large, ml > m. Hence,

⇒ xml
∈ Kml

⊆ Kn ⊆ Cn ⊆ Fn

⇒ x∞ ∈ Cn = Fn ∀n ≥ 1

⇒ x∞ ∈
∞⋂
n=1

Fn.

This is a contradiction, so µ0 is countably additive.

(Will Continue Later).

1.4 Completion of a Measure / Measure Space

Sometimes, it’s convenient to assume that subsets of null sets are measurable. Let (S,Σ, µ) be a measure
space. Set N := {A ⊆ S | ∃ B ∈ Σ and µ(B) = 0 s.t. A ⊆ B}. Define a new sigma algebra:

Σ∗ := {F ⊆ S | ∃ G,H ∈ Σ s.t. G ⊆ F ⊆ H and µ(H \G) = 0}

Note that Σ ⊆ Σ∗.

Theorem 5. Σ∗ is a σ-algebra and Σ∗ is the σ-algebra generated by:

Σ∗ = σ(Σ ∪N).

Proof. Exercise.

Definition 10. Define µ∗ to be a set function of Σ∗ by: for all F ∈ Σ∗ if G ⊆ F ⊆ H for some G,H ∈ Σ,
with µ(G) = µ(H), then,

µ∗(F ) := µ(G) = µ(H).

Proposition 7. µ∗ is a measure on (S,Σ∗).

Example 4. Prove this statement.

Definition 11 (Complete Measure Space). (S,Σ∗, µ∗) is a complete measure space, i.e., the comple-
tion of (S,Σ, µ) (we get this by “patching up the holes”).

Note that if we complete the Lebesgue measure λ, (R,B(R), λLeb, then we obtain the completed
Lebesgue measure and the Lebesgue σ-algebra: (R,L(R), λ∗).
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1.5 Events and Independence

Assume that (Ω,F ,P) is a probability space.

Definition 12 (Set-theoretic limsup and liminf). Let {An | n ≥ 1} be a sequence of events, i.e., An ∈ F
for all n ≥ 1. Then,

lim sup
n→∞

An :=
∞⋂
n=1

∞⋃
m=n

Am = lim
n→∞

∞⋃
m=n

Am. (7)

lim inf
n→∞

An :=
∞⋃
n=1

∞⋂
m−n

Am = lim
n→∞

∞⋂
m=n

Am. (8)

Note that lim supnAn ∈ F and lim infnAn ∈ F . In words, what do these sets mean?

• if ω ∈ lim supnAn, then ∀ n ≥ 1, ∃ an mn > n such that ω ∈ Amn ⇐⇒ ∃ a sequence {mn | n ≥ 1}
such that mn → ∞ as n → ∞ and ω ∈ Amn for all n ≥ 1 ⇐⇒ ω is in infinitely many A′

ns. So, we
write lim supnAn = An i.o. .

• if ω ∈ lim infnAn, then there exists an n ≥ 1 such that ω ∈ Am for all m ≥ n ⇐⇒ ω ∈ An

eventually for all n. Hence, we say lim infn→∞An = An “eventually always, (ea)”

Proposition 8. Properties of liminf/limsup.

1. Obviously, lim infnAn ⊆ lim supnAn. If lim infnAn = lim supnAn, then we say that the set-
theoretic limit, limnAn, exists, and is defined to be:

lim
n

An = lim inf
n

An = lim sup
n

An.

If {An} is monotonic, then limnAn exists.
2. If {An | n ∈ N} is a sequence of events and {Bn | n ∈ N} ⊆ F , and An ⊆ Bn for all n ∈ N, then:

lim sup
n

An ⊆ lim sup
n

Bn

lim inf
n

An ⊆ lim sup
n

Bn.

3. (deMorgan’s Law):

lim sup
n

Ac
n = (lim inf

n
An)

c

lim inf
n

Ac
n = (lim sup

n
An)

c

4. “Jumping between An and Ac
n”:

(lim sup
n

An) \ (lim inf
n

An) = lim sup
n

(An \An+1) (9)

5. Let {An | n ≥ 1} and {Bn | n ≥ 1} be two sequences of events. Then, in general:

(a) (lim supnAn) ∩ (lim supnBn) ⊇ lim supn(An ∩Bn).

i. Note that the converse inclusion is in general NOT true. For example, An = {(−1)n}
and Bn = {(−1)n+1} for all n ∈ N. They’re out of phase, and so An ∩ Bn = ∅ ⇒
lim supn(An ∩Bn) = ∅. However, lim supnAn = {−1, 1} = lim supnBn.

(b) (lim supnAn) ∪ (lim supnBn) = lim supn(An ∪Bn)
(c) (lim infnAn) ∩ (lim infnBn) = lim infn(An ∩Bn).
(d) (lim infnAn) ∪ (lim infnBn) ⊆ lim infn(An ∪Bn). In general, the “⊇” is NOT true.



Math 587: Advanced Probability Fall 2021 Page 12

Theorem 6 (Borel-Cantelli 1 (BC1)). If
∑∞

n=1 P (An) < ∞, then P (lim supnAn) = 0.

Verbally, this result tells us that if the probability of An decays sufficiently fast (i.e., summable), then
the chance of the limsup happening will go to zero.

Proof.

P
(
lim sup

n
An

)
= P

( ∞⋂
n=1

∞⋃
m=n

Am

)

= lim
n→∞

P

( ∞⋃
m=n

Am

)
.

≤ lim
n→∞

∞∑
m=n

P (Am)

= 0.

2 Random Variables. Independence

2.1 Independence

Definition 13. Given a probability space (Ω,F ,P), a sequence of events {En | n ≥ 1} ⊆ F is called
(mutually) independent if for all k ∈ N, for all 1 ≤ i1 ≤2≤ ... ≤ i2:

P

 k⋂
j=1

Eij

 =
k∏

j=1

P
(
Eij

)
. (10)

It’s also possible to define independence for an uncountable family of events. For example, consider
{Eα | α ∈ I} ⊆ F , where I is an arbitrary index set. This is independent if, for all k ∈ N, distinct
{α1, ..., αk} ⊆ I,

P

 k⋂
j=1

Eαj

 =

k∏
j=1

P
(
Eαj

)
.

Proposition 9. (Properties of Independence).

1. If A,B ∈ F , we use the notation A ⊥ B, then the following are all equivalent:

(a) P (A ∩B) = P (A)P (B).
(b) P (Ac ∩B) = P (Ac)P (B).
(c) P (Ac ∩Bc) = P (Ac)P (Bc).
(d) P (A ∩Bc) = P (A)P (Bc).

2. Let A be an event (A ∈ F). Then, A ⊥ B for all B ∈ F ⇐⇒ P (A) = 0 or P (A) = 1.

(a) Heuristically, if every event has nothing to do with A, then A must be quite extreme, i.e., it is
extremely likely to happen or it is extremely unlikely to happen.

Proof. “⇒”: A ⊥ A means that:

P (A) = P (A ∩A) ⇒ P (A) ∩ P (A) .
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The only solution to x2 = x is x = 0 and x = 1. Hence, P (A) ∈ {0, 1}.

“⇐”: if P (A) = 0, then for all B ∈ F , A ∩B ∈ F and P (A) ∩ P (B) = 0. Hence,

P (A ∩B) = P (A)P (B) .

3. We say that a sequence is pairwise independent if for all i ̸= j,

P (Ai ∩Aj) = P (Ai)P (Aj)

i.e., Ai ⊥ Aj . Note that (mutual) independence ⇒ pairwise independence, but the converse is not
true. We can illustrate this with an example:

Example 5. Let Ω = {HH,HT, TH, TT}. Let F = 2Ω = {all subsets of Ω }. For all ω ∈ Ω,
P ({ω}) = 1

4 . Define the following events:

(a) E1 = {HH,HT}.
(b) E2 = {HH,TH}.
(c) E3 = {HH,TT}.
The events are pairwise independent:

P (E1 ∩ E2) = P (E2 ∩ E3) = P (E1 ∩ E3) =
1

4
.

However, the events themselves are not independent:

P (E1 ∩ E2 ∩ E3) =
1

4
̸= P (E1)P (E2)P (E3) .

4. If A ⊆ B, then A and B cannot be independent, unless in the trivial case:

P (A) = 0 or P (B) = 1.

If A ∩B = ∅, again, A and B cannot be independent unless in the trivial case.

Definition 14 (Independent). Let (Ω,F ,P) be a probability space. Suppose that {Gn | n ∈ N} is a
sequence of σ algebras, Gn ⊆ F for all n ∈ N. Then, {Gn | n ∈ N} is independent if for any choice of
En ∈ Gn for n ≥ 1, the sequence {En | n ∈ N} is independent.

Proposition 10. Given {En | n ∈ N} ⊆ F , we say that {En} is independent ⇐⇒ {σ(En) | n ≥ 1} =
{∅,Ω, En, E

c
n} is independent.

Theorem 7. Given (Ω,F ,P), let {In} be a sequence of π-systems (of subsets of Ω), In ⊆ F for all n ≥ 1.
Then, {In} is independent ⇐⇒ {σ(In) | n ≥ 1} is independent.

What this theorem tells us is that to check if two sigma algebras A and B are independent, we only
need to show that the generating π-system is independent. This makes sense, as the behaviour of measure
is determined through behaviour on a generating π-system.

Proof. “⇐”: trivial.
“⇒”: WLOG, we will assume that Ω ∈ In for all n ≥ 1. Otherwise, just replace In with In ∪ {Ω} = Ĩn
and Ĩn is a π-system and {Ĩn} is independent. It’s sufficient to show that for any fixed N ≥ 1, the family
{σ(In), σ(I2), ..., σ(In)} is independent. Choose and fix an arbitrary Gn ∈ In for n = 1, 2, 3, ..., N − 1. We
will define two set functions on σ(In), both σ(In) → [0, 1]:
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1. EN ∈ σ(IN ) 7→ PN (EN ) := P
(
G1 ∩ ... ∩GN−1 ∩ EN

)
.

2. EN ∈ σ(IN ) 7→ P′
N (EN ) =

∏N−1
j=1 P (Gj) · P

(
EN
)
.

Clearly, it’s easy to check that both PN and P′
N are measures on the same σ-algebra and

PN (Ω) = P′
N (Ω).

Further, PN = P′
N on In and for all GN ∈ IN :

P

 N⋂
j=1

Gj

 =
N∏
j=1

P (Gj) .

By the uniqueness of measures, we know that PN = PN ′ on the sigma algebra generated by IN . Therefore,
for arbitrary Gn ∈ In ( n = 1, ..., N − 1), and arbitrary EN ∈ σ(IN ):

P
(
G1 ∩G2 ∩ ... ∩GN−1 ∩ EN

)
=

N−1∏
j=1

P (Gj)P
(
EN
)
.

Stage 1 is done. Next, we choose and fix Gj ∈ Ij for 1 ≤ j ≤ N − 2 and EN ∈ σ(In). Set two measures:

1. PN−1 := EN−1 ∈ σ(IN−1) 7→ PN−1(E
N−1) = P

(⋂N−2
j=1 Gj ∩ EN−1 ∩ EN

)
.

2. P′
N−1 := EN−1 ∈ σ(In) 7→ P′

N−1(E
N−1) =

∏N−2
j=1 P (Gj)P

(
EN−1

)
P
(
EN
)
.

Moreover,

• PN−1 and P′
N−1 are measures defined on σ(IN−1).

• PN−1(Ω) = P′
N−1(Ω) by the conclusion of the previous step.

• PN−1 = P′
N−1 on IN−1 also by the previous step.

Hence, by the uniqueness of measure, PN−1 = P′
N−1 on the whole sigma algebra σ(IN−1). Hence, ∀Gj ∈ Ij

for j = 1, ..., N − 2, and for all EN−1 ∈ σ(IN−1) and for all EN ∈ σ(IN ),

P
(
G1 ∩G2 ∩ ... ∩GN−2 ∩ EN−1 ∩ EN

)
=

N−2∏
j=1

P (Gj)P
(
EN−1

)
P
(
EN
)
.

Repeating this procedure, we will eventually get: for all Ej ∈ σ(Ij) for i ≤ j ≤ N ,

P

 N⋂
j=1

Ej

 =
N∏
j=1

P
(
Ej
)
.

Hence,

{σ(I1), σ(I2), ..., σ(IN )}

is independent for all N ≥ 1. Hence,

{σ(In) | n ∈ N}

is independent.
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Theorem 8 (Borel-Cantelli Lemma 2 BC2). Given a probability space (Ω,F ,P), let {En | n ∈ N} be an
independent sequence of events. If

∞∑
n=1

P (En) = ∞,

then, P (lim supnEn) = 1.

Proof. It’s enough to show that P (lim infnE
c
n) = 0. We have:

P
(
lim inf

n
Ec

n

)
= lim

n→∞
P

( ∞⋂
m=n

Ec
m

)
.

Fix any n ∈ N . For every n′ > n,

P

(
n′⋂

m=n

Ec
m

)
=︸︷︷︸

indep.

n′∏
m=n

P (Ec
m) =

n′∏
m=n

(1− P (En)).

Next note that for every t ∈ [0, 1], 0 ≤ 1− t ≤ e−t. Then,

n′∏
m=n

(1− P (Em)) ≤ e−
∑n′

m=n P(Em)

which goes to zero as we send n′ → ∞ (as it’s the tail of a divergent series). Hence,

P

( ∞⋂
m=n

Ec
m

)
= 0 ⇒ P

(
lim inf

n
Ec

n

)
= 0.

We remark that in (BC2) independence is a necessary condition. We can easily cook up counter
examples for how this is false when we lose independence. For example, consider ([0, 1],B([0, 1]), λ). Set
En :=]0, 1/n[ for all n ∈ N. Then:

λ(En) =
1

n

and,

∞∑
n=1

λ(En) =
∞∑
n=1

1

n
= ∞.

However, lim supnEn = ∅ and λ(∅) = 0. This fails since the {En} is not independent, since the are nested.

Corrolary 1. Given (Ω,F ,P) and {En | n ∈ N} ⊆ F being independent. If {Cn | k ≥ 1} is a family of
index sets such that Ck ⊆ N for all k ≥ 1 and Ck ∩ Cl = ∅ for all k ̸= l, then {σ(En | n ∈ Ck) | k ≥ 1} is
independent, i.e., {σ({En | n ∈ C1}), σ({En | n ∈ C2}), ...} is independent.

Proof. For each k ≥ 1, set:

Ik :=


p⋂

j=1

Enj | p ≥ 1, nj ∈ Ck, 1 ≤ n1 ≤ n2 ≤ ... ≤ np
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Ik is a π-system and σ(Ik) = σ({En | n ∈ Ck)}. We only need to show that Ik is independent. To this
end, take 1 ≤ k1 ≤ ... ≤ kl to be any finite set of indices, and Aj ∈ Ikj for 1 ≤ j ≤ l. Assume that

Aj =

pj⋂
j=1

E(j)
ni

,

pj ∈ N and n
(j)
i ∈ Ckj . Then,

P (A1 ∩A2 ∩ ... ∩Al) = P

 l⋂
j=1

E
n
(l)
j

 =
l∏

j=1

pj∏
i=1

P
(
E(j)

ni

)
=

l∏
j=1

P (Aj) .

where the second to last equality follows from the independence of {En} and the disjointedness of all the
C ′
ks.

Example 6. An example of (BC2) . Consider flipping a fair coin infinitely many times. Again let our
probability space be (Ω,F ,P) as introduced before. Set:

En := {ω ∈ Ω | ωn = 0},

i.e., the nth flip results in a tail. It’s easy to see that the {En} are independent. We also notice that
P (En) =

1
2 for all n ≥ 1. Hence, by (BC2) :

∞∑
n=1

P (En) = ∞ ⇒ P (En i.o.) = 1.

In words, this means that almost surely tails appears infinitely many times. Now consider:

Bn := {ωn < ωn+1}

for all n ∈ N. In words, this means ωn = 0 and ωn+1 = 1. It’s easy to see that P (Bn) =
1
4 , since we are

specifying outcomes for two coin flips. Note that {Bn | n ≥ 1} is NOT independent – there are outcomes
overlapped in a flip, in particular, ωn+1 is involved in both flips. But, {B2n | n ≥ 1} is independent by
the previous corollary. Now we can use (BC2) .

∞∑
n=1

P (B2n) = ∞ ⇒ P (B2n i.o. ) = 1

along a sub-sequence, so P (Bn i.o. ) = 1.

2.2 Tail σ-algebra

Definition 15. Given (Ω,F ,P) and a sequence of events {En | n ≥ 1}, define:

T :=
∞⋂
n=1

σ({En, En+1, En+2, ...}). (11)

This T is defined to be the tail sigma algebra associated with {En}. If an event A ∈ T , then A is called
a tail event with respect to {En}.

Heuristically, the tail sigma algebra ignores the first finite length of a sequence of events. Let’s see
some examples.
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Example 7. lim supnEn ∈ T . Similarly, lim infnEn ∈ T . Let’s prove it, we will prove it for lim supnEn

but you can do it for lim infnEn.

Proof. For all N ≥ 1:

lim sup
n

En =
∞⋂
n=1

∞⋃
m=n

Em︸ ︷︷ ︸
:=Bn↓

=
∞⋂

n=N

∞⋃
m=n

Em ∈ σ({EN , EN+1, ...})

Hence,

lim sup
n

En ∈
∞⋂

N=1

σ({EN , EN+1, ...}) = T.

Theorem 9 (Kolmogorov’s 0-1 Law). If {En} is independent, and T is the tail σ-algebra associated with
En, then for all A ∈ T , P (A) ∈ {0, 1}.

Heuristically, if A ∈ T , then it’s not going to talk to finitely many of the En’s, so it must be a
somewhat trivial event.

Proof. Set:

I :=


k⋂

j=1

Enj | k ∈ N, nj ∈ N, 1 ≤ j < k, {1 ≤ n1 ≤ 1n2 ≤ ... ≤ nk}


I is a π-system and σ(I) = σ({En | n ∈ N}). Now, given anyA ∈ T , for allN ≥ 1, A ⊆ σ({EN+1, EN+2, ...})
This means that for all N ≥ 1 and for all B ∈ σ({E1, ..., EN}), one has that A ⊥ B, because {En} is
independent. Now take E ∈ I and assume that E =

⋂k
j=1Enj . Then, E ∈ σ({En1 , ..., Enk

) which shows
that A ⊥ E. Hence,

∀ B ∈ σ(I) = σ({En | n ∈ N}) A ⊥ B.

However, A ∈ σ({En | n ∈ N}) ⇒ A ⊥ A ⇒ P (A) ∈ {0, 1}.

Let’s see an example of Kolmogorov 0-1 Law in action.

Example 8. Consider flipping a fair coin infinitely many times. Same probability space as usual,
(Ω,F ,P). Set:

En := {ωn = 0}

for all n ∈ N. We have that {En} is independent.

1. Consider E := {ω ∈ Ω |
∑∞

n=1 ωn < ∞} ∈ F . This set is equivalent to {ω ∈ Ω | ωn =
0 for all but finitely many n }. We claim that E ∈ T . To see this, observe that for any N ≥ 1:

E = {ω ∈ Ω |
∞∑
n=1

ωn < ∞}

= {ω ∈ Ω |
∞∑

n=N

ωn < ∞} ∈ σ({EN , EN+1, ...})

By (K 0-1 Law) , P (E) ∈ {0, 1}. Very often, choosing which one is the trouble. In this case, we
can see that P (E) = 0, since P (Ec

n i.o.) = 1.
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2. For r ∈ [0, 1], set

Er := {ω ∈ Ω | lim
n→∞

1

n

n∑
j=1

ωj = r}.

We can confirm that Er ∈ T , because for all N ≥ 1:

Er = {ω ∈ Ω | lim
n→∞

1

n

n∑
j=1

ωj = r}

= {ω ∈ Ω | lim
n→∞

1

n

n∑
j=N

ωj = r} ∈ σ({EN , EN+1, ...})

Hence, by (K 0-1 Law) , ∀ r ∈ [0, 1], P (Er) ∈ {0, 1}. Since every limit is unique, Er ∩ Er′ = ∅ for
all r ̸= r′, and so there exists at most one r, r∗, such that P (Er∗) = 1.

2.3 Measurable Functions

Definition 16 (Measurable). Let (S,Σ) be a measurable space and h : S → R (in certain situations,
could be R) be a function. We say that h is Σ-measurable, denoted by h ∈ mΣ if: ∀B ∈ B(R), the
pre-image of B under h is measurable, i.e., h−1(B) ∈ Σ.

Proposition 11. (Properties of Measurable Functions)

1. If h is a measurable function, h ∈ mΣ, then {h = ∞} = {s ∈ S | h(s) = +∞} ∈ Σ and {h =
−∞} = {s ∈ S | h(s) = +∞} ∈ Σ.

(a) Because, for example {h = ∞} =
⋂∞

n=1{h > n} =
⋂∞

n=1 h
−1(]n,∞[) ∈ Σ.

2. More generally, h : (S1,Σ1) → (S2,Σ2), then we say that h is Σ1 \ Σ2-measurable if ∀B ∈ Σ2,
h−1(B) ∈ Σ1.

3. For al A ⊆ R, h−1(Ac) = (h−1(A))c. Moreover, for all Aα ∈ R,where α ∈ I,

h−1

(⋃
α∈I

Aα

)
=
⋃
α∈I

h−1(Aα),

h−1

(⋂
α∈I

Aα

)
=
⋂
α∈I

h−1(Aα).

4. Suppose C ⊆ B(R)and σ(C) = B(R). Then, a function is measurable ⇐⇒ ∀c ∈ C, h−1(c) ∈ Σ.

Proof. “⇒”: trivial.
“⇐”: Assume that h−1(C) ⊆ Σ. Since C generates B(R), we can write:

h−1(B(R)) = h−1(σ(C)) = σ(h−1(C)) ⊆ Σ.

In particular, h : S → R is measurable ⇐⇒ ∀a ∈ R, {h ≤ a} ∈ Σ.
5. Given h : S → R measurable, f : R → R a Borel function, then (f ◦ h) ∈ mΣ.
6. Given h1, h2 ∈ mΣ, h1 + h2, h1 − h2, h1 · h2, h1

h2
(where h2 ̸= 0),..., ∈ mΣ.
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(a) To see that h1 + h2 is a measurable function: for all a ∈ R:

{h1 + h2 > a} = {h1 > a− h2}

=
⋃
q∈R

{h1 > q > a− h2}

=
⋃
q∈Q

{h1 > q} ∩ {h2 > a− q}

All those sets are in Σ.

7. Given {hn | n ∈ N} ⊆ mΣ, we have:

inf
n

hn, sup
n

hn, lim inf
n

hn, lim sup
n

hn ∈ mΣ.

(a) We only need to prove the first two: to see that lim infn hn ∈ mΣ, for all a ∈ R:

{inf
n

hn ≥ a} =

∞⋂
n=1

{hn ≥ a} ∈ Σ.

Note that if we were to consider {infn hn ≤ a}, then {infn hn ≤ a} ≠
⋃∞

n=1{hn ≤ a}. The ⊇ is
correct, but ⊆ is incorrect. To fix it, push it out by ε.

(b) In particular, {lim supn hn = ∞}, {lim infn hn = ∞}, {limhn exists }, {limn hn exists in R} are
all in Σ.

Definition 17 (Random Variable). Consider a probability space (Σ,F ,P). X : Σ → R is a Random
Variable if X is F-measurable, i.e., X ∈ mF .

Definition 18 (Sigma Algebra Generated by X). Let X be a random variable. The σ-algebra generated
by X, denoted by σ(X), is:

σ(X) := {X−1(B) | B ∈ B(R)}. (12)

i.e.: σ(X) is the smallest σ-algebra with respect to which the random variable X is measurable.

Heuristically, it’s all the information available to us through X.

Example 9. Set X = χA for some A ∈ F . Then, σ(X) = {A,Ac, ∅,Ω}.

Proposition 12. Remarks:

1. Given (Σ,F ,P) and X : Ω → R. Then, X is a random variable ⇐⇒ ∀ a ∈ R {X ≤ a} ∈ F .

(a) Note that {{X ≤ a} | a ∈ R} is the π system generating σ(X).

2. Let {Xα | α ∈ I} be a family of random variables on (Ω,F ,P). Then, the σ-algebra generated by
{Xα | α ∈ I} is

σ({Xα | α ∈ I}) = σ({X−1
α (B) | B ∈ B(R), α ∈ I}).

3. Let {Xn | n ∈ N} be a sequence of random variables on (Ω,F ,P). Set:

P :=


k⋂

j=1

{xnj ≤ aj}

 .

Then, P is a π-system and σ(P) = σ({Xn | n ∈ N}).
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Definition 19 (Independent Random Variables). Given (Ω,F ,P) and a sequence of random variables
{Xn | n ∈ N}, {Xn | n ∈ N} is independent if {σ(Xn) | n ∈ N} is independent.

Proposition 13. {Xn | n ∈ N} are independent ⇐⇒ ∀k ≥ 1 , ∀ 1 ≤ n1 ≤ n2 ≤ ... ≤ nk, ∀a1, a2, ..., ak ∈
R:

P

 k⋂
j=1

{Xnj ≤ aj}

 =

k∏
j=1

P
(
Xnj ≤ aj

)
. (13)

Definition 20 (Tail Sigma Algebra). Let {Xn | n ∈ N} be a sequence of random variables. The tail
sigma-algebra associated with {Xn | n ∈ N} is defined as:

T :=

∞⋂
n=1

σ({Xn, Xn+1, ...}) (14)

This sigma algebra looks at the asymptotic behaviour of X.

We remark that we can think of lim infnXn as a function:

ω ∈ Ω 7→ lim inf
n

Xn(ω).

To see that lim infnXn ∈ mT , for all a ∈ R, {lim infnXn ≤ a}. Note that:

lim inf
n

rn = sup
n≥1

inf
m≥n

rm.

So,

{lim inf
n

Xn ≤ a} = { sup
n≥N

inf
m≥n

Xm ≤ a} ∈ σ({XN , XN+1, ...})

for all N ≥ 1. Moreover, as in the case of sets, the sets {lim supnXn = ∞}, {lim infnXn = −∞},
{limXn exists}, {limnXn exists in R}, ... ∈ T . This makes sense as this is all asymptotic behaviour.
In addition, if Sn :=

∑n
j=1Xj for all n ∈ N, then Sn is a random variable and Sn ∈ mσ({X1, ..., Xn}.

Moreover, given any sequence {bn | n ∈ N} ⊆ R+ with bn ↑ ∞, we have:

lim sup
n

Sn

bn
, lim inf

n

Sn

bn
∈ mT.

To see this, note that for all n ∈ N,

lim sup
n

Sn

bn
= lim sup

n

1

bn

SN +

n∑
j=N+1

Xj


= lim sup

n

∑n
j=N+1Xj

bn
∈ mσ({XN+1, XN+2, ...}).

Theorem 10 (Kolmogorov’s 0-1 Law). Let {Xn | n ∈ N} be a sequence of independent random variables
and let T be the tail sigma-algebra associated with {Xn | n ∈ N}. Then, for all A ∈ T :

P (A) ∈ {0, 1} (15)

If X ∈ mT , then X is constant a.s., i.e., ∃ an a ∈ R̄ such that P (X = a) = 1.
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Proof. We will only prove the second statement. If X ∈ mT , then for all x ∈ R, {X ≤ x} ∈ T . Hence,

P (X = x) ∈ {0, 1}.

Define: a := inf{x ∈ R | P (X ≤ x) = 1}. Then, there are three possibilities:

1. a = +∞: the jump never happens, and so ∀M > 0, P (X ≤ M) = 0 ⇒ P (X = ∞) = 1.
2. a = −∞: then, P (X ≤ −M) = 0 ⇒ P (X = −∞) = 1.
3. a ∈ R: ∀ n ≥ 1, P

(
X ≤ a+ 1

n

)
= 1 ⇒ P

(
X ≤ a− 1

n

)
= 0. This implies that:

P (X = a) = lim
n→∞

P
(
a− 1

n
≤ X ≤ a+

1

n

)
= 1. (16)

Example 10. Suppose that {Xn} is independent. Set Sn :=
∑n

j=1Xj . Let {bn} ⊆ R+ such that bn ↑ ∞.
Then,

lim sup
n

Xn, lim inf
n

Xn, lim sup
n

Sn

bn
, lim inf

n

Sn

bn
∈ mT.

Then, (K 0-1 Law) they are all constant a.s.

There is a horrible proof with combinatorics and boxes which I am omitting.

2.4 Quick Review of Probability

Definition 21 (Law/Distribution). Given (Ω,F ,P) and a random variable X : Ω → R. The law/
distribution of X, denoted by LX , id the probability distribution on (R,B(R))such that for all B ∈ B(R):

LX(B) = P
(
X−1(B)

)
= P (X ∈ B) . (17)

The distribution function of X (of LX) is:

Fx : R → [0, 1]

x ∈ R 7→ FX(x) := P (X ≤ x) = LX(]−∞, x])

Proposition 14 (Properties of FX). 1. FX is increasing.
2. limx→+∞ FX(x) = 1.
3. limx→−∞ FX(x) = 0.
4. FX is right continuous: ∀ a ∈ R, FX(a+) = limx→a+ FX(x) = FX(a).
5. For all a > b:

(a) FX(a)− FX(b) = P (b < X ≤ a) = LX(]b, a]).
(b) FX(a−)− FX(b) = P (b < X < a) = LX(]b, a[).
(c) FX(a)− FX(a−) = P (X = a) = LX({a}).

In particular, if FX is continuous at a, then P (X = a) = 0.

Example 11. Some examples of distribution functions:

1. X is a uniform random variable on ]a, b[, a < b, if:

FX(x) =


0 if x ≤ a
x−a
b−a if x ∈]a, b[
1 if x ≥ b.
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2. X is an exponential random variable with parameter λ > 0 if:

FX(x) =

{
0 if x ≤ 0

1− e−λx if x > 0.

3. X is a Guassian random variable with parameters m, σ2 > 0 if:

FX(x) =

∫ x

−∞

1√
2πσ2

e−
t−m

2σ2 dt for all x ∈ R.

Definition 22 (Independent and Identically Distributed). Let {Xn | n ∈ N} be a sequence of random
variables. We say they are independent and identically distributed (iid) if {Xn | n ∈ N} is
independent and for some probability measure µ on (R,B(R)), LXn = µ for all n ∈ N.

CAUTION! The outcomes may not always be the same.

Example 12. Let {Xn | n ∈ N} be iid on (Ω,F ,P) with common distribution being the exponential
distribution with parameter L. Set:

L := lim sup
n

Xn

ln(n)
. (18)

By (0-1 Law) we know that L is constant a.s. Now the question is: what is that constant?

Claim: L = 1 a.s.

Proof. For all α > 0 and for all n ≥ 1,

P (Xn > α ln(n)) = 1− FXn(α ln(n)) = n−α

By (BC1) and (BC2) we have:

P
(

Xn

ln(n)
> α i.o.

)
=

{
0 if α > 1

1 if α ≤ 1.

In particular, when α = 1, we get tat

P
(

Xn

ln(n)
> 1 i.o.

)
= 1.

For ω ∈ Ω, if

Xn(ω)

ln(n)
> 1

for infinitely many n’s, then L(ω) = lim supn
Xn(ω)
ln(n) ≥ 1. Hence:{

Xn

ln(n)
≥ 1 i.o.

}
⊆ {L ≥ 1} ⇒ P (L ≥ 1) = 1.

On the other hand, if:

{L > 1} =
∞⋃
k=1

{
L ≥ 1 +

1

k

}

⊆
∞⋃
k=1

{
Xn

ln(n)
> 1 +

1

2k
i.o.

}
.

But, this is a null set for all k ≥ 1. Hence, P (L > 1) = 0 ⇒ P (L = 1) = 1.



Math 587: Advanced Probability Fall 2021 Page 23

2.5 Convergence of Random Variables

Definition 23 (Almost Sure Convergence). Given a probability space (Ω,F ,P) and {Xn} a sequence of
random variables.

1. We say that Xn converges to X almost surely and we write Xn → X a.s. (as n → ∞) if:

P
(
lim
n→∞

Xn = X
)
= 1. (19)

If Xn and X are R-valued, this is equivalent to:

P
(
lim
n→∞

|Xn −X| = 0
)
= 1. (20)

2. We write that “Xn → ∞” a.s. if P (limn→+∞Xn = 0) = 1.

We also call this pointwise convergence.

Proposition 15. Let {Xn | n ∈ N} be a sequence of R-valued random variables and X be a R-valued
random variable on a probability space (Ω,F ,P). Then,

1. Xn → X a.s. ⇐⇒ ∀ ε > 0,

P (|Xn −X| ≤ ε e.a.) = 1 ⇐⇒ ∀ ε > 0 P (|Xn −X| > ε) = 0. (21)

This converts pointwise behaviour to something I can look at probabilistically.
2. Xn → ∞ a.s. ⇐⇒

∀M > 0 P (Xn ≥ M e.a.) = 1 ⇐⇒ ∀M > 0 P (Xn < M i.o.) = 0. (22)

Proof. We will prove the first equivalence.
“⇒”: Assume that Xn → X a.s. Write the set {limn→∞Xn = X} in terms of unions and intersections:

{
lim
n→∞

Xn = X
}
=

∞⋂
k=1

∞⋃
n=1

∞⋂
m=n

{
|Xn −X| ≤ 1

k

}
. (23)

Notice that for all ε > 0, we can choose some k0 > 1 such that 1
k0

< ε. Then, we have the following set
inclusions:{

lim
n→∞

Xn = X
}
⊆

∞⋃
n=1

∞⋂
m=n

{
|Xm −X| ≤ 1

k0

}
⊆

∞⋃
n=1

∞⋂
m=n

{|Xn −X| ≤ ε} = lim inf {|Xn −X| ≤ ε}

(24)

Since P (limn→∞Xn = X) = 1, P (lim infn→∞ {|Xn −X| ≤ ε}) = 1, which is what we wanted to show.

Definition 24 (Convergence in Probability). We say that “Xn converges to X” in probability, we write
“Xn → X” in prob as n → ∞ if ∀ ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0 (25)

Similarly, we write “Xn → ∞” in probability if ∀M > 0, limn→∞ P (Xn ≤ M) = 0.

What is the relationship between these two modes of convergence?

Proposition 16. Xn → X a.s. ⇒ Xn → X in probability.
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Proof. Assume that Xn → X a.s. Then, for all ε > 0, P (lim supn{|Xn −X| > ε}) = 0. But recall that:

lim sup
n

P (|Xn −X| > ε) ≤ P
(
lim sup

n
{|Xn −X| > ε}

)
= 0.

The proof relies on the following lemma.

Lemma 2. Let {An | n ∈ N} ⊆ F . Then,

P
(
lim inf

n
An

)
≤ lim inf

n
P (An) and P

(
lim sup

n
An

)
≥ lim sup

n
P (An) . (26)

Proof. Set Bn :=
⋂∞

n=mAn. Then, the Bn form an increasing sequence of sets. By construction ,for all
m ≥ n, P (Bn) ≤ P (An), we have that P (Bn) ≤ infm≥n P (An).

P
(
lim inf

n
An

)
= lim

n→∞
P (Bn)

≤ lim inf
n→∞,m≥n

P (An)

= lim inf
n

P (An) .

Remark. Convergence in probability in general does not imply convergence a.s. Consider the follow-
ing example:

Xn : Ω → {0, 1}

with

P (Xn = 0) = 1− 1

n

P (Xn = 1) =
1

n
.

Further, assume that the sequence is independent. Then, for all 0 < ε < 1:

lim
n→∞

P (|Xn| > ε) = lim
n→∞

P (|Xn| = 1) = lim
n→∞

1

n
= 0.

This implies that Xn → 0 in probability. However,
∑∞

n=1 P (Xn = 1) = ∞. By Borel-Cantelli II, this
means that P (Xn = 1 i.o) = 1. This means that Xn ↛ 0 a.s.

Proposition 17. If Xn → X in probability, then there exists a subsequence {nk | k ∈ N} ⊆ N such that
Xnk

→ X a.s. as k → ∞.

Proof. Suppose Xn → X in probability. Then, for all k ∈ N, this means that limn P
(
|Xn −X| > 1

k

)
= 0.

This means we can construct a subsequence {nk|k ∈ N} such that P
(
|Xnk

−X| > 1
k

)
≤ 1

k2
. Since 1

k2
is

summable, by Borel-Cantelli Lemma 1,

P
(
|Xnk

−X| > 1

k
i.o.

)
= 0.

For all ε > 0, for k sufficiently large, 1
k < ε. Hence, we have the following set inclusion:

{|Xnk
−X| > ε i.o.} ⊆

{
|Xnk

−X| > 1

k
i.o.

}
.
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By monotonicity of probability,

P (|Xnk
−X| > ε i.o.) = 0.

This proves that Xnk
→ X a.s. as k → ∞.

Proposition 18. Xn → X in probability ⇐⇒ for all subsequences {nk | k ∈ N}, there exists a
subsequence {nkl | l ∈ N} such that Xnkl

→ X in probability as l → ∞.

Proof. “⇒”: Trivial.
“⇐”: For a contradiction, assume that Xn ↛ X in probability. Then, there exists a ε > 0 such that for
some δ > 0, there exists a subsequence {nk | k ∈ N} such that:

P (|Xnk
−X| > ε) > δ ∀ k ∈ N. (27)

However, according to the assumption/hypothesis, there exists a subsequence of this, {nkl |l ∈ N}, such
that Xnkl

→ X in probability, which is a contradiction. Hence, Xn → X in probability.

Proposition 19. If Xn → X in probability, and if f : R → R is continuous, then f(Xn) → f(X) in
probability.

Proof. Since Xn → X in probability, we have by the previous proposition that for all subsequences
{nk | k ∈ N} Xnk

→ X in probability as k → ∞. By an earlier proposition, we know that there exists
a previous subsequence Xnkl

→ X a.s. as l → ∞. With almost sure / pointwise behaviour, we can
use the continuity of functions. This gives us that f(Xnkl

) → f(X) almost surely as l → ∞. Hence,
f(Xnkl

) → f(X) in probability. Since the mother subsequence Xnk
was arbitrary, this tells us that

f(Xn) → f(X) in probability.

3 Constructing Integrals on General Measure Spaces

3.1 Preparation

We want to construct integrals of h ∈ mΣ. Given h : S → R := R ∪ {+∞}, h ∈ mΣ.

1. Set h = h+ − h−, where

h+ := max{h, 0} and h− := max{−h, 0},

where both h+ and h− are non-negative and measurable with respect to Σ, i.e., h± ∈ (mΣ)+

2. Suppose h ∈ (mΣ)+. For each k > 0, set hk := min{h, k}. In other words, for all s ∈ S:

hk(s) =

{
h(s) if h(s) ≤ k

k if h(s) > k

As k ↑, hk ↑ h. We are essentially approximating h with a sequence of bounded, non-negative
functions. For each k > 0, hk is non-negative and bounded, i.e., h ∈ (mΣ)+ ∩ bΣ.

3. Suppose h ∈ (mΣ)+ ∩ bΣ. Suppose that h is bounded by some value k. For each n ≥ 1 and for
every i = 0, 1, ..., 2nk, set:

Ah(n, i) := {s ∈ S | i2−n ≤ h(s) ≤ (i+ 1)2−n} = h−1([i2−n, (i+ 1)2−n])

Clearly these sets are disjoint for different indices. Define:

hn :=
2nk∑
i=0

χAn(n,i)i2
−n. (28)

i.e., s ∈ Ah(n, i) then hn(s) = i2−n. For each n ∈ N, hn is non-negative, bounded, and simple (it’s
a linear combination of indicator functions). As n → ∞ hn ↑ h.
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The combination of (1), (2), and (3), h ∈ mΣ means that h = h+ − h− with h+ ∈ (mΣ)+.

Theorem 11 (Monotone Class Theorem). Let H be a class of bounded functions on some space S
satisfying:

1. H is a vector space over R.
2. the constant function 1 ∈ H.
3. if hn ∈ H for n ∈ N such that hn ≥ 0 and hn ↑ h for some bounded function h on S, then h ∈ H.

We call this closed under monotonic convergence.

If H satisfies these properties, we call H a monotone class. If I is a π-system of subsets of S and for
all A ∈ I, χA ∈ H, then bσ(I) ⊆ H. In other words, if f is bounded and measurable with respect to σ(I),
then f ∈ H.

Proof. General advice: when you see a π-system, try to make a d-system out of it. Let D := {F ⊆
S | χF ∈ H}. To see this, we need to check the rules.

1. S ∈ D because 1 ∈ H by (2).
2. if A,B ∈ D and if A ⊆ B then B \A ∈ D because:

χB\A = χB − χA ∈ H (by being a vector space) (29)

3. if An ∈ D for n ∈ N and An ↑ A, then A ∈ D because χAn ↑ χA. Since monotonic classes are closed
under monotonic convergence, this means that χA ∈ H.

This shows that D is a d-system. Since I ⊆ D, by the π-d theorem, σ(I) ⊆ D. This shows that for all
B ∈ σ(I), χB ∈ H.

Next, given any h ∈ bσ(I), we apply steps (I)-(III) to h. There exists a sequence h±n ∈ SF+ such
that h±n ↑ h±. We have that h± ≤ k and we can write it as:

h±n =

2nk∑
i=0

i2−n χ{i2−n≤h±≤(i+1)2−n}︸ ︷︷ ︸
∈σ(I)

∈ H (30)

Since H is a monotone class, H is closed under limits. Hence, h± ∈ H. Since H is a monotone class, it’s
a vector space, and so h = h+ − h− ∈ H.

Theorem 12 (Monotone Class Theorem – General Measurable Functions). Let H be a monotone class
of (general) R-valued functions on S. If I is a π-system and for all A ∈ I, χA ∈ H, then mσ(I) ⊆ H.

Proof. Almost identical to the one above, except we will apply steps (I)-(III) to a given function h ∈
mσ(I).

The following proposition is a useful application of the MCT.

Proposition 20. Given (S,Σ1) and (S,Σ2) two measurable spaces. Then, X : S1 → S2 and Y : S1 → R.
Assume that X is Σ1 \ Σ2-measurable.1 Then, Y ∈ mσ(X1) ⇐⇒ there exists an f : S2 → R such that
f ∈ mΣ2 such that Y = f(X).

Proof. “⇐”: trivial.
“⇒”: Set:

H := {Y : S1 → R | ∃ f ∈ mΣ2 s.t. Y = f(X)}. (31)

Claim: H is a monotone class of general functions. We need to check the conditions:

1i.e. for all B ∈ Σ2, X
−1(B) ∈ Σ1. σ(X) = {X−1(B) | B ∈ Σ2} is a σ-algebra of subsets of S1.
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1. H is clearly a vector space.
2. 1 ∈ H, just set f ≡ 1.
3. Since the limit may not exist, we need to go with the limsup. If Yn ∈ H, Yn ≥ 0, Yn ↑ Y , then there

exists an fn ∈ mΣ2 such that Yn = fn(x). Just:

Y = lim
n→∞

fn(x) = (lim sup
n

fn)(x). (32)

Y ∈ H.

Moreover, for every A ∈ σ(X) (a π-system), there exists a B ∈ Σ2 such that A = X−1(B). By the
monotone class theorem, mσ(X) ⊆ H.

We now start the construction of the integral.

Notation. Given (S,Σ, µ) and h ∈ mΣ, then the integral of h with respect to µ is denoted by µ(h). We
write:

µ(h) =

∫
S
hdµ =

∫
S
h(s)µ(ds). (33)

For some B ∈ Σ,

µ(χBh) =

∫
B
hdµ =

∫
B
h(s)µ(ds). (34)

Definition 25. Given h ∈ SF+, assume that h =
∑n

k=1 akχAk
where all the Ak are measurable and

ak ∈ [0,∞] for every k = 1, ..., n. Define:

µ(h) =
n∑

k=1

akµ(Ak). (35)

Remarks.

1. One should verify that µ(h) is well-defined, i.e., if h =
∑n

k=1 akχAk
=
∑m

l=1 blχBl
for some Bl ∈ Σ,

bl ∈ [0,∞], then:

n∑
k=1

akµ(Ak) =
n∑

l=1

bkµ(Bl). (36)

2. If h1, h2 ∈ SF+ and if µ(h1 ̸= h2) = 0 then µ(h1) = µ(h2). To see this, do not take h1 − h2!

h1 =
n∑

k=1

akχAk

h2 =

n∑
l=1

blχBl
.

Then,

µ(h1) =
n∑

k=1

akµ(Ak ∩ {h1 ̸= h2})︸ ︷︷ ︸
=0

+

n∑
k=1

akµ(Ak ∩ {h1 = h2})
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We have:

h2 = h2 · χ{h1 ̸=h2} + h1 · χ{h1=h2}}

=
m∑
l=1

blχ{Bl∩{h1 ̸=h2} +
n∑

k=1

akχ{Ak∩{h1=h2}}.

This gives us:

µ(h2) =

m∑
l=1

blµ(Bl ∩ {h1 ̸= h2})︸ ︷︷ ︸
=0

+

n∑
k=1

akµ(Ak ∩ {h1 = h2}).

This shows that they are equal.
3. Let h1, h2 be simple functions. Then:

(a) h1 ∨ h2 = max{h1, h2} ∈ SF+.
(b) h1 ∧ h2 = min{h1, h2} ∈ SF+.

4. Given h ∈ SF+, write h =
∑n

k=1AkχAk
. Whenever convenient, necessary, or helpful, we assume

that Ak is a partition of S, i.e.,
⋃n

k=1Ak = S and Ak ∩Ak′ = ∅ whenever k ̸= k′.

Properties of µ(h) for SF+

1. Linearity: given h1, h2 ∈ SF+, c1, c2 ∈ [0,∞]:

µ(c1h1 + c2h2) = c1µ(h1) + c2µ(h2). (37)

2. Monotonicity: given h1, h2 ∈ SF+, if h1 ≤ h2, then µ(h1) ≤ µ(h2).

Definition 26 (Integral for General Non-Negative Measurable Functions). Given f ∈ (mΣ)+. Define:

µ(f) := sup{µ(h) | h ∈ SF+ h ≤ f} (38)

If f ∈ SF+ ⊆ (mΣ)+, say, f =
∑n

k=1 χAk
ak. Previously, we had that the integral was:

µ(f) =
n∑

k=1

akµ(Ak). (39)

We ask ourselves: what is the relation between (38) and (39)? Claim: for f ∈ SF+, it turns out that
(38) = (39).

Proof. Since f ∈ SF+, we clearly get (38) ≤ (39). Meanwhile, for all h ∈ SF+ such that h ≤ f , by
monotonicity, µ(h) ≤ µ(f). This observation gives us the other inequality, (39) ≤ (38).

The following theorem gives us a baby version of the monotonic convergence theorem.

Theorem 13. Suppose f ∈ (mΣ)+ and hn ∈ SF+ for n ∈ N. Suppose that hn ↑ f . Then,

µ(f) = lim
n→∞

µ(hn) i.e. µ(hn) ↑ µ(f). (40)

Proof. To do.

Properties of µ(f) for f ∈ (mΣ)+

1. If f ∈ (mΣ)+ and µ(f) = 0, then f = 0 a.e.
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Proof. Assume otherwise, i.e., µ({f > 0}) = δ > 0. Since {fn > 1
n} ↑ {f > 0}, there exists some

n ∈ N such that

µ

({
f >

1

n

})
>

δ

2
> 0 (41)

Set h = 1
nχ{f> 1

n
}. Then, h ∈ SF+ and h ≤ f . Hence, by monotonicity,

µ(f) ≥ µ(h) =
1

n
µ

({
f >

1

n

})
≥ 1

n

δ

2
> 0

2. If f ∈ (mΣ)+ and µ(f) < ∞, then f < ∞ a.e. The proof of this one is an exercise.
3. If f, g ∈ (mΣ)+ and f = g a.e., then µ(f) = µ(g).

Proof. Reminder: do not take f − g! Take fn, gn ∈ SF+ such that fn ↑ f and gn ↑ g. Then, for
every n ∈ N,

fnχ{f=g} + gnχ{f ̸=g} ↑ g

Hence,

µ(g) = lim
n→∞

µ(fnχ{f=g} + gnχ{f ̸=g})

= lim
n→∞

µ(fnχ{f=g}) + lim
n→∞

µ(gnχ{f ̸=g})︸ ︷︷ ︸
=0

Similarly, µ(f) = limn→∞ µ(fnχ{f=g}). Hence, µ(f) = µ(g).

4. Linearity: let f, g ∈ SF+. c ∈ [0,∞]. Then:

(a) µ(f + g) = µ(f) + µ(g).
(b) cµ(f) = µ(cf).

Proof. The proof follows from baby MON. Take fn, gn ∈ SF+ such that fn ↑ f and gn ↑ g. Note
that fn + gn ↑ f + g and cfn ↑ cf . Then,

µ(f + g) = lim
n

µ(fn + gn) + lim
n

µ(fn) + lim
n

µ(gn) = µ(f) + µ(g).

5. Monotonicity: if f, g ∈ (mΣ)+, f ≤ g. Then, µ(f) ≤ µ(g).

Proof. For all h ∈ SF+, h ≤ g implies that h ≤ f , obviously. Then,

µ(f) = sup{µ(h) | h ∈ SF+, h ≤ f} ≤ sup{µ(h) | h ∈ SF+, h ≤ g} = µ(g).

Now all that’s left to do is define µ(f) for f ∈ mΣ.

Definition 27. Given (S,Σ, µ) and f ∈ mΣ. If at least one of µ(f+), µ(f−) is finite, then we define the
integral as:

µ(f) := µ(f+)− µ(f−). (42)
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Note that the existence of µ(f) is a quite “weak” property: e.g. if µ(f) and µ(g) exist, in general we
may not be able to conclude that µ(f + g) = µ(f) + µ(g).

Definition 28 (Integrable Functions). Given (S,Σ, µ), f ∈ mΣ. f is called µ-integrable, denoted by f ∈
L1(S,Σ, µ) if µ(f+) < ∞ and µ(f−) < ∞, or equivalently, µ(|f |) < ∞, or equivalently, µ(f+)−µ(f−) ∈ R.

Properties of µ(f) for f ∈ L1(S,Σ, µ)

1. If f ∈ L1(S,Σ, µ), then f ∈ R almost everywhere.
2. If f, g ∈ L1(S,Σ, µ), and if c ∈ R, then f + g ∈ L1(µ), cf ∈ L1(µ), and µ(f + g) = µ(f) + µ(g) and

µ(cf) = cµ(f).

Proof. We will prove that µ(f + g) = µ(f) + µ(g). Set h = f + g. Since |h| ≤ |f |+ |g|, h ∈ L1(µ).
Next, write out the positive and negative parts of h:

h = h+ − h− = f+ − f− + g+ − g−.

Note that with the integrability conditions, h±, g±, f± are almost everywhere finite. Re-arrange the
above as:

h+ + f− + g− = f+ + g+ + h−

Apply linearity of integrals for (mΣ)+, and use the fact that each integral is finite:

µ(h+) + µ(f−) + µ(g−) = µ(f+) + µ(g+) + µ(h−)

⇒µ(h+)− µ(h−) = µ(f+)− µ(f−) + µ(g+)− µ(g−).

⇒µ(h) = µ(f) + µ(g).

This proves linearity.

3. If f, g ∈ L1(S,Σ, µ) and f ≤ g almost everywhere, then µ(f) ≤ µ(g).

3.2 Integral Convergence Theorems

Theorem 14 (Monotone Convergence Theorem). Given (S,Σ, µ), let {fn}n∈N ⊆ mΣ such that fn ↑ f
(this implies that f ∈ mΣ). Assume that µ(f−

1 ) < ∞ (Equivalently, µ(f1) exists and µ(f1) > −∞). Then,

µ(fn) ↑ µ(f) ⇐⇒ lim
n→∞

µ(fn) = µ( lim
n→∞

fn). (43)

Proof. Since fn ↑ f and µ(f−
1 ) < ∞, then f−

1 < ∞ almost everywhere. Hence, by the monotonicity of
the sequence, fn ≤ f−

n ≤ f−
1 < ∞ and so by monotonicity of the integrals:

µ(f−) ≤ µ(f−
n ) ≤ µ(f−

1 ) < ∞.

First Step: Assume that f1 ≥ 0. Then, f ≥ fn ≥ f1 ≥ 0. Then, for each n ≥ 1, take {hn,m | m ∈ N} ⊆
SF+ such that hn,m ↑ fn as m → ∞.

f1 f2 f3 . . . fn . . . f
...

...
...

...
h1,m h2,m h3,m . . . hn,m
...

...
h1,3 h2,3
h1,2 h2,2
h1,1 h2,1
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For each m ≥ 1, set gm := max{h1m, h2m, ..., hn,m}. This is going to be a diagonalization argument. For
each m, we have that gm ∈ SF+, gm+1 ≥ gm, and gm ↑ f . Why? Because for each n ≥ 1:

f ≥ lim
m→∞

gm ≥ lim
m→

hn,m = fn. (44)

Hence,

f ≥ lim
m→∞

gm ≥ lim
n→∞

fn = f ⇒ f = lim
n→∞

gn.

This gives us that µ(gn) ↑ µ(f) as n → ∞.

Second Step: since h1m, h2m, ..., hnm ≤ fm, we get that gm ≤ fm. By monotonicity, µ(gm) ≤ µ(fm).
We then obtain:

µ(f) = lim
m→∞

µ(gm) ≤ lim
n→∞

µ(fn) ≤ µ(f).

So, by the squeeze theorem, µ(fn) ↑ µ(f) almost everywhere as n → ∞.

Third Step: Set f̃n := fn + f−
1 . Then, f̃n ≥ 0. Set f̃ := f + f−

1 . Then, f̃ ≥ 0. Then, f̃n ↑ f̃ .
Hence, µ(f̃n) ↑ µ(f̃). Now write it all out:

f̃n = fn + f−
1 = f+

n − f−
n + f−

1 ⇒ f̃n + f−
n = f+

n + f−
1

Taking the integral of both sides,

µ(f̃n) + µ(f−
n ) = µ(f+

n ) + µ(f−
1 ) ⇒ µ(f̃n) = µ(fn) + µ(f−

1 ).

Similarly, µ(f̃) = µ(f) + µ(f−
1 ). Thus, µ(fn) ↑ µ(f).

Theorem 15 (Monotone Convergence Theorem’). Given a measure space (S,Σ, µ) and {fn | n ∈ N} ⊆
mΣ. If fn ↓ f for some f ∈ mΣ and µ(f+

1 ) < ∞, then µ(f) is defined an µ(fn) ↓ µ(f).

Proof. Consider fn := f+
1 − fn, and f = f+

1 − f . Then, fn, f ∈ (mΣ)+, and fn ↑ f . By the previous
theorem, Monotone Convergence Theorem, µ(fn) ↑ µ(f). Verify that µ(fn) = µ(f+

1 )− µ(fn) and µ(f) =
µ(f+

1 )− µ(f). Therefore, µ(fn) ↓ µ(f).

Remark that MON and MON’, fn ↑ f or fn ↓ f can be replaced by fn ↑ f almost everywhere or fn ↓ f
almost everywhere.

Lemma 3 (Fatou’s Lemma). Given (S,Σ, µ) and {fn} ⊆ mΣ, if there exists a g ∈ mΣ such that
µ(g−) < ∞ and fn ≥ g for all n ∈ N. Then,

µ(lim inf
n

fn) ≤ lim inf
n

µ(fn) (45)

Proof. For every n ∈ N, set gn := infm≥n fm. Then, gn ↑ lim infn fn. We want to use the Monotone
Convergence Theorem; since g1 ≥ g, µ(g−1 ) ≤ µ(g−) < ∞ ⇒ I have a floor. By the Monotone Convergence
Theorem, µ(gn) ↑ µ(lim infn fn). Meanwhile, gn + g ≥ 0 and gn + g ≤ fm + g− for all m ≥ n. Hence, by
monotonicity for integrals of non-negative functions,

µ(gn + g) ≤ µ(fm + g−) for all m ≥ n.

Verify that µ(gn + g−) = µ(gn) + µ(g−) and µ(fm + g−) = µ(fn) + µ(g−). This gives us that:

µ(gn) ≤ inf
m≥n

µ(fm) ⇒ µ(lim inf
n

fn) = lim
n

µ(gn) ≤ lim inf
n

µ(fn).
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Theorem 16 (Fatou’). If {fn | n ∈ N} ⊆ mΣ and there exists a g ∈ mΣ such that µ(g+) < ∞ and
fn ≤ g for all n ∈ N, Then:

µ(lim sup
n

fn) ≥ lim sup
n

µ(fn). (46)

Theorem 17 (Dominated Convergence Theorem (DOM)). Suppose {fn | n ∈ N} ⊆ mΣ and g ∈
L1(S,Σ, µ) and |fn| ≤ |g| for all n ∈ N. If fn → f for some f ∈ mΣ (i.e., for all s ∈ S, f(s) = limn fn(s)),
then fn → f in L1(S,Σ, µ), then fn → f in L1(S,Σ, µ), i.e., limn→∞ µ(|fn − f |) = 0 and in particular,

lim
n→∞

µ(fn) = µ(f). (47)

Proof. Since g ∈ L1, |fn| ≤ |g| for all n ∈ N. By monotonicity, µ(|fn|) ≤ µ(|g|) < ∞. Hence, fn ∈ L1

for each n ∈ N. Moreover, |f | = limn→∞ |fn|. By Fatou’s Lemma, µ(|f |) ≤ lim infn→∞ µ(|fn|) < ∞ ⇒
f ∈ L1. Observe that |fn − f | ≤ 2|g|. By Fatou’s Lemma Prime,

0 = µ(lim sup
n

|fn − f |) ≥ lim sup
n

µ(|fn − f |).

This establishes that limn µ(|fn − f |) = 0, i.e., fn → f in L1(µ). By the triangle inequality,

|µ(fn)− µ(f)| = |µ(fn − f)|
≤ µ(|fn − f |) → 0.

Note that the existence of g ∈ L1 such that |fn| ≤ |g| for all n ∈ N is necessary to apply dominated
convergence theorem. To see why, consider:

fn = χ[n,2n].

Then, fn ≥ 0 for all n ∈ N, and limn fn = 0. However, for λ the Lebesgue measure, for every n ∈ N,
µ(fn) = n. Hence,

λ(fn) ↛ λ(lim
n

fn).

Lemma 4 (Scheffé’s Lemma). Suppose we have a sequence {fn | n ∈ N} ⊆ L1(S,Σ, µ), f ∈ L1(S,Σ, µ)
and fn → f . Then,

fn → f in L1(S,Σ, µ) ⇐⇒ lim
n→∞

µ(|fn|) = µ(|f |). (48)

Proof. “⇒”: Using the inequality, ||fn| − |f || ≤ |fn − f |:

|µ(|fn|)− µ(|f |)| = |µ(|fn| − |f |)|
≤ µ(||fn| − |f ||)
≤ µ(|fn − f |) → 0.

“⇐”: Let gn := |fn| + |f | − |fn − f | for all n ∈ N. Then, gn ∈ (mΣ)+ and gn ∈ L1(S,Σ, µ). By Fatou’s
lemma,

µ(lim inf
n

gn) ≤ lim inf
n

µ(gn).
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Hence,

µ(lim inf
n

(|fn|+ |f | − |fn − f |))︸ ︷︷ ︸
2|f |

≤ lim inf
n

(µ(|fn|) + µ(|f |)− µ(|fn − f |))︸ ︷︷ ︸
2µ(|f |)−lim supn µ(|fn−f |)

⇒2µ(|f |) ≤ 2µ(|f |)− lim sup
n

(|fn − f |)

⇒ lim
n→∞

µ(|fn − f |) = 0.

Remark that in (DOM) and (Scheffé), “fn → f” can be replaced by “fn → f” a.e.

Next we discuss Radon-Nikodym (RN) theorem.

Definition 29. Given a measure space (S,Σ, µ) and f ∈ (mΣ)+, we define a measure fµ on Σ as follows:
for all A ∈ Σ:

fµ(A) :=

∫
A
fdµ = µ(χA · f). (49)

Proposition 21. fµ is a measure.

Proof. Need to show the rules.

1. fµ(∅) = 0.
2. Given a sequence of sets {An | n ∈ N} such that Ai ∩Aj = ∅ for i ̸= j,

fµ

( ∞⋃
n=1

An

)
= µ

(
f

∞∑
n=1

χAn

)

= µ

(
lim

N→∞

N∑
n=1

fχAn

)

= lim
N→∞

µ

( ∞∑
n=1

fχAn

)
(by MON)

= lim
N→∞

N∑
n=1

µ(fχAn)

=
∞∑
n=1

µ(fχAn)

=

∞∑
n=1

fµ(An)

This shows that f is countably additive.

Proposition 22. For g ∈ (mΣ)+, (fµ)(g) = µ(f · g).

Proof. By definition, this holds for every χA for all A ∈ Σ. By linearity, we know that this holds for all
g ∈ SF+. Next, for a general g ∈ (mΣ)+, we take )gn ∈ SF+ for n ∈ N such that gn ↑ g. By MON:

(fµ)(gn) ↑ (fµ)(g) and µ(f · gn) ↑ µ(f · g).
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We then obtain:

(fµ)(g) =︸︷︷︸
(MON)

lim
n
(fµ)(gn) = lim

n
µ(f · gn) =︸︷︷︸

(MON)

µ(f · g).

Proposition 23. Given f ∈ (mΣ)+, h ∈ mΣ, h ∈ L1(S,Σ, fµ) ⇐⇒ f · h ∈ L1(S,Σ, µ). If h ∈
L1(S,Σ, fµ) then (fµ)(h) = µ(fh)

Proof. h ∈ L1(fµ) ⇐⇒ (fµ)(f
±) < ∞ ⇐⇒ µ(fh±) < ∞ ⇐⇒ µ((fh)±) < ∞ ⇐⇒ fh ∈ L1(µ).

Theorem 18 (Radon-Nikodym Theorem). Let γ and µ be two measures on (S,Σ). We say that γ is
absolutely continuous with respect µ if for all A ∈ Σ µ(A) = 0 ⇒ γ(A) = 0. If γ is absolutely
continuous with respect to µ, then there exists an f ∈ (mΣ)+ such that γ = fµ i.e., for all A ∈ Σ,

γ(A) =

∫
A
fdµ. (50)

We call f the RN-Derivative of γ with respect to µ, denoted by f = dγ
dµ .

Assume that (Ω,F ,P) is a probability space and X is a random variable. Let LX be the law or
distribution of X. If LX is absolutely continuous with respect to λLeb then by the RN theorem, there
exists an fX ∈ (mB(R))+ such that LX = fXλLeb, i.e., fX is the RN-derivative of LX with respect to
λLeb. We call fX the probability density function of X. For example, X ∼ N(µ, σ2) a random variable,
then:

fX(x) =
1√
2πσ2

e
(x−µ)2

2σ2 .

If fX is the probability density function of X, then for all A ∈ B(R),

P (X ∈ A) = LX(A) =

∫
A
fX(x)dx. (51)

Then, ∫
Ω
XdP =

∫
R
XdLX =

∫
R
xfX(x)dx.

Definition 30 (Expectation). The expectation of X is

E [X] :=

∫
Ω
XdP (52)

For A ∈ F ,

E [X;A] = E [XχA] =

∫
A
XdP.

Then, X ∈ L1(Ω,F ,P) ⇐⇒ E [|X|] < ∞ ⇐⇒ E [X] ∈ R. (MON) and (MON)’, (Fatou) and
(Fatou)’, (DOM), and (Scheffé) still apply in the setting of (Ω,F ,P). In fact, some of those results can
be strengthened. In other words, Xn → X a.s. can be replaced by Xn → X in probability.

Theorem 19 (pMON). Let Xn, X be random variables on (Ω,F ,P). If Xn ≤ Xn+1 and Xn → X in
probability and E

[
X−

1

]
< ∞. Then,

E [Xn] ↑ E [X] .
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Proof. Suppose Xn → X in probability. Then, I can find a subsequence Xnk
→ X as k → ∞. Since

Xn ≤ Xn+1 it turns out that I’ll need Xn → X a.s. The result now follows from the regular (MON).

Theorem 20 (pDOM). Suppose Xn, n ∈ N, X are random variables on Ω such that Xn → X in
probability. Assume that there exists a Y ∈ L1(Ω,F ,P) such that |Xn| ≤ |Y | for all n ≥ 1. Then,
Xn, X ∈ L1(Ω,F ,P) and Xn → X in L1(P).
Proof. Since for all n ≥ 1, |Xn| ≤ |Y | and Xn ∈ L1(P). Then, since Xn → X in probability, there exists
a subsequence Xnk

such that Xnk
→ X a.s. as k → ∞. Hence,

|X| = lim
k→∞

|Xnk
| ≤ |Y | ⇒ X ∈ L1(P).

For a contradiction, assume that the statement does not hold. In other words, assume that Xn ↛ X in
L1(P). Then, E [|Xn −X|] ↛ 0 a.s. as n → ∞. Then, there exists a δ > 0 and a subsequence {nl} such
that E [|Xnl

−X|] ≥ δ. Since Xn → X in probability, there is a subsequence {nlp} such that Xnlp
→ X

a.s. as p → ∞ and |Xnlp
| → X in L1(P) (by the standard DCT).

Theorem 21 (pScheffé). Let Xn, n ∈ N, X be random variables on Ω, X ∈ L1(P) and Xn → X in
probability. Then, Xn → X in L1(P) ⇐⇒ limn→∞ E [|Xn|] = E [|X|].
Proof. Exercise.

3.3 Review of Lp Spaces

Definition 31 (pth Moment). For 1 ≤ p < ∞, we say that X ∈ Lp(Ω,F ,P) if |X|p ∈ L1(Ω,F ,P). If
X ∈ Lp(P), then E [Xp] is the pth moment of X.

Facts about Lp spaces.

1. Lp is a vector space over R: i.e., if X,Y ∈ Lp, a, b ∈ R, then aX + bY ∈ Lp.
2. Given X ∈ Lp, ||X||p := (E [|X|p])1/p.

(a) ||X||p is a norm. We have:

i. || · ||p ≥ 0 and ||X||p = 0 ⇐⇒ X = 0 a.s.
ii. For all c ∈ R, ||cX||p = |c|||X||p.
iii. For all X,Y ∈ Lp, ||X + Y ||p ≤ ||X||p + ||Y ||p (Minkowski’s Inequality).

3. Cauchy-Schwarz Inequality: if X,Y ∈ L2(P), then XY ∈ L1(P) and

E [|XY |] ≤ ||X||2||Y ||2. (53)

4. Hölder’s Inequality: assume 1 ≤ p < ∞, 1 ≤ q < ∞ such that 1
p + 1

q = 1. If X ∈ Lp(P) and

Y ∈ L1(P), then XY ∈ L1(P) and:

E [|XY |] ≤ ||X||p||Y ||q.

5. Monotonicity: if 1 ≤ p ≤ q < ∞, then X ∈ L1 ⇒ X ∈ Lp. Hence, ||X||p ≤ ||X||p. This tells us
that Lp spaces are nested.

6. Lp is a Banach Space.

(a) (Lp, || · ||p) is a Banach Space.
(b) (L2, || · ||2) is a Hilbert space with inner product (X,Y )2 = E [XY ].

7. If X,Y ∈ L2(P) (we call this condition “if X and Y are square integrable”). Then, we can define
the variance of X and the covariance of X and Y as:

(a) Var(X) := E
[
(X − E [X])2

]
= E

[
X2
]
− (E [X])2.

(b) Cov(X,Y ) = E [(X − E [X])(Y − E [Y ])] = E [XY ]− E [X]E [Y ]

By Cauchy-Schwarz, we have the following inequality:

|Cov(X,Y )| ≤
√
Var(X)Var(Y ) (54)
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3.4 Concentration Inequalities

Theorem 22 (Markov’s Inequality). Given (Ω,F ,P) and a random variable X on Ω. If g : R → [0,∞[
is a non-negative, increasing, Borel function, then for all c ∈ R:

P (X > c) ≤ E [g(x);X ≥ c]

g(c)
≤ E [g(X)]

g(c)
(55)

(assuming that g(c) ̸= 0).

Proof. The first inequality follows from the monotonicity of integrals of non-negative functions. This is
because g(x) ≥ g(c) since g is increasing:

E [g(X)] ≥ E [g(X);X ≥ c] ≥ E [g(c);X ≥ c] = g(c)P (X ≥ c) .

Re-arranging this gives the desired result.

Theorem 23 (Chebychev’s Inequality). Given X ∈ L2(P), for all c > 0,

P (|X − E [X] | > c) ≤ 1

c2
Var(X). (56)

• If X ∈ Lp(P) for some p ≥ 1, then ∀c ≥ 0:

P (|X| ≥ c) <
1

cp
E [|X|p; |X| ≥ c] ≤ 1

cp
E [|X|p] .

• If eα|X| ∈ L1(P) for some α > 0, then for all c > 0,

P (|X| ≥ c) ≤ e−αXE
[
eα|X|; |X| ≥ c

]
≤ e−αcE

[
eα|X|

]
Essentially, better integrability will give us better decay.

Proposition 24. GivenXn, n ∈ N,X ∈ Lp(P) for some p ≥ 1. IfXn → X in Lp(P) i.e., limn→∞ E [|Xn −X|p] =
0. Then, Xn → X in probability.

Proof. The proof follows directly from Markov’s Inequality,.

∀ε > 0 P (|Xn −X| > ε) ≤ 1

εp
E [|Xn −X|p] → 0 as n → ∞.

1. Convergence in Lp ⇒ convergence in probability.
2. Convergence almost surely ⇒ convergence in probability.
3. Convergence in Lp ⇏ convergence almost surely
4. Convergence almost surely ⇏ Convergence in Lp

Example 13. Take ([0, 1], B([0, 1]), λLeb). Set:

Xn := χ]0,1/n[n
2/p

for n ≥ 1. Then, Xn → 0 pointwise almost surely. But:∫
]0,1[

|Xn|pdλ = n2 1

n
= n → ∞

which shows that Xn ↛ 0 in Lp.
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Example 14. Take again ([0, 1], B([0, 1]), λLeb). For k ∈ N. and j = 1, 2, ..., k, set

φkj := χ] j−1
k

, 1
k
].

Re-order the φkj ’s in lexographical order:

φ11 := X1

φ21 := X2 φ22 := X3

φ31 := X4 φ32 := X5 φ33 := X6

and re-name them X1, X2, .... For all n ≥ 1, ∃1 kn, jn such that Xn = φknjn . For all n ≥ 1, there exists
one kn, jn such that Xn = φknjn . For every p ≥ 1,

E [|Xn|p] =
1

kn
→ 0 as n → ∞ ⇒ Xn → 0 in Lp(P).

However, for all x ∈ [0, 1], for all k ≥ 1, there exists j = 1, ..., k such that φkj (x) = 1. Hence, Xn(x) = 1
for infinitely many n. This implies that P (Xn = 1 i.o.) = 1 which tells us that Xn ↛ 0 almost surely.

Theorem 24 (Jensen’s Inequality). If X ∈ L1(P) and if φ : R → R is convex and φ(x) ∈ L1(P), then:

φ(E [X]) ≤ E [φ(X)] (57)

Proof. The proof relies on using a convenient fact about convex functions: if φ is convex, then for all
x ∈ R, there exists a line l passing through (x, φ(x)) and l lies entirely below the graph of φ. This
line is called the supporting line at (x, φ(x)). Assume that y = αx + β is the supporting line at
(E [X] , φ(E [X]). So I know that everywhere, it’s true that:

φ(E [X]) = αE [X] + β ≤ φ(x).

By integrability and monotonicity, this implies that:

φ(E [X]) ≤ E [φ(X)] ,

which is what we wanted to show.

As a corollary, we obtain the following helpful inequalities:

• If E [|X|p] < ∞ for some p ≥ 1 then,

(E [|X|])p ≤ E [|X|p] .

• If E [eαx] < ∞ for some α ∈ R, then

eαE[X] ≤ E
[
eαX

]
• If E [X+] < ∞, then

(E [X])+ ≤ E
[
X+
]

Here, φ = max{0, x}.
• If E [X−] < ∞, then

(E [X])− ≤ E
[
X−] .

Here, φ = max{0,−x}.
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Theorem 25. Suppose X is an R-valued random variable on a probability space (Ω,F ,P) with distribution
LX and f : R → R a Borel function. Then,

f(x) ∈ L1(Ω,F ,P) ⇐⇒ f ∈ L1(R,B(R),LX) (58)

In this case,

E [f(x)] =

∫
R
fdLX (∗). (59)

Proof. We’ll use the Monotone Class Theorem. First, assume that f is bounded and Borel f ∈ bB(R)
(and hence f ∈ L1(LX), f(x) ∈ L1(P)). Set:

H := {f ∈ bB(R) | (∗) holds for f}.

We need to check that H is a monotone class.

1. H is clearly a vector space over R (because of linearity).
2. 1 ∈ H also clear.
3. If fn ∈ H, fn ≥ 0, and fn ↑ f ∈ bB(R), then f will satisfy (∗) because of (MON) or (DOM).

Moreover, for all A ∈ B(R), χA is in H. By the monotone class theorem, bB(R) ⊆ H which implies that
bB(R) = H. Hence, (∗) holds for all bounded Borel functions.

Now, for general Borel functions f , set fk := fχ{|f |≤k} for all k ∈ N. For sure, we know that |fk| ↑ |f |
and fk → f as k → ∞. By Montone convergence theorem,

E [|f(x)|] = lim
k→∞

E [|fk(x)|] =︸︷︷︸
(∗)

lim
k→∞

∫
R
|fk|dLX =

∫
R
|f |dLX .

Hence, f(x) ∈ L1(P) ⇐⇒ f ∈ L1(LX). Now we can show it for general f by using DOM with dominating
function |f |:

E [|f(x)|] = lim
k→∞

= lim
k→∞

∫
R
fkdLX =︸︷︷︸

(DOM)

∫
R
fdLX .

Some remarks on the proof and this theorem:

1. It’s clear from the proof that (∗) holds for f ∈ (mB(R))+.
2. If LX << λLeb, (i.e., LX << dx), and the probability density function is given by fX . Then, for

every Borel function g ∈ mB(R), g(x) ∈ L1(P) ⇐⇒ g ∈ L1(LX) ⇐⇒ g · fX ∈ L1(λLeb). In this
case,

E [g(X)] =

∫
R
gdLX =

∫
R
g(x)LX(x)dx.

Theorem 26. Given (Ω,F ,P) a probability space. Let X and Y be two independent random variables on
Ω. Then, for every W ∈ L1(P) ∩mσ(X) and Z ∈ L1(P) ∩mσ(Y ). Then,

W · Z ∈ L1(P) and E [WZ] =︸︷︷︸
(∗)

E [W ]E [Z] . (60)

Before the proof, we need a Lemma.
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Lemma 5. Assume f(X) ∈ L1(P) and B ∈ B(R). Then,

E [f(X);Y ∈ B] =︸︷︷︸
(∗∗)

E [f(X)]P (Y ∈ B) .

In this case, g = χB,

Proof. Set H = {f ∈ bB(R) | (∗∗) holds for f}. First check that H is a monotone class. We need to check
these three things:

1. H is a vector space over R.
2. 1 ∈ H is obvious.
3. If fn ∈ H, fn ≥ 0, fn ↑ f ∈ bB(R) ⇒ f ∈ H.

H is a monotone class ✓. Now, for all A ∈ B(R), set f = χA. Then,

E [χA(X);Y ∈ B] = P (X ∈ A, Y ∈ B)

= P (X ∈ A)P (Y ∈ B) (by independence).

= E [χA(X)]P (Y ∈ B) .

This shows that χA ∈ H and hence by the Monotone class theorem, bB(R) = H. Net, for a general f ∈
mB(R) such that f(x) ∈ L1(P). Set fk := fχ{|f |≤k}. Then, fk(x) → f(x) as k → ∞ and |fk(x)| ≤ |f(x)|.
Hence,

E [f(x);Y ∈ B] =︸︷︷︸
(DOM)

lim
k→∞

E [fk(X);Y ∈ B] =︸︷︷︸
(∗∗)

lim
k→∞

E [fk(X)]P (Y ∈ B) =︸︷︷︸
(MON)

E [f(X)]P (Y ∈ B) .

Which proves the lemma.

Proof. The theorem is equivalent to proving that for every f, g ∈ mB(R) such that f(X), g(Y ) ∈ L1(P)
we must have that f(X), g(Y ) ∈ L1(P) and E [f(X)g(Y )] = E [f(X)]E [g(Y )].

By the lemma, we know that (∗) holds for g = χB (we call these root functions) for all b ∈ B(R).
Exercise: set G := {g ∈ bB(R) | (∗) holds for g}. Complete the proof by following similar steps as
above.

Corrolary 2. If X and Y are independent random variables and X,Y ∈ L1(P). Then, the covariance
of X and Y , denoted Cov(X,Y ) exists and Cov(X,Y ) = 0.

3.5 Uniform Integrability

Proposition 25. Let X be a random variable on (Ω,F ,P). Then,

X ∈ L1(P) ⇐⇒ lim
M→∞

E [|X|; |X| ≥ M ] = 0

Proof. “⇐”: Choose M sufficiently large such that E [|X|; |X| ≥ M ] ≤ 1. Since |X| is non-negative, we
can apply linearity:

E [|X|] = E [|X|; |X| < M ] + E [|X|; |X| ≥ M ]

≤ M + 1

≤ ∞ ⇒ X ∈ L1(P).
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“⇒”: Since X ∈ L1(P), E [|X|] < ∞. Using (DOM) or (MON), we get:

∞ > E [|X|]
= lim

M→∞
E [|X|; |X| < M ]

= lim
M→∞

(E [|X|]− E [|X|; |X| ≥ M ])

= E [|X|]− lim
M→∞

E [|X|; |X| ≥ M ] .

This implies that limM→∞ E [|X|; |X| ≥ M ] = 0, which is what we wanted to show.

Definition 32. Let {Xn | n ∈ N} be a sequence of random variables on a probability space (Ω,F ,P).
Then, {Xn} is uniformly integrable if

lim
M→∞

sup
n∈N

E [|Xn|; |Xn| ≥ M ] = 0. (61)

i.e., for all ε > 0, there exists a M > 0 such that E [|Xn|; |Xn| ≥ M ] ≤ ε for all n ∈ N. In other words,
the concentration of Xn happens in a uniform way in N .

Proposition 26. (Helpful Properties about Uniform Integrability)

1. If {Xn} is uniformly integrable, then {Xn} is bounded in L1(P). In other words,

sup
n

E [|Xn|] < ∞ (62)

2. If {Xn} is bounded in L1(P) for some p > 1, then {Xn| n ∈ N} is uniformly integrable.

(a) We have: Lp boundedness for p > 1 ⇒ uniform integrability ⇒ L1 boundedness.

Proof. Let’s prove (2). Assume that {Xn | n ∈ N} is bounded in L1 for some p > 1. Then, for all M ≥ 0,

E [|Xn|; |Xn| ≥ M ] ≤ E
[
|Xn|

|Xn|p−1

Mp−1
; |Xn| ≥ M

]
≤ E [|Xn|p]

1

Mp−1
∀n ∈ N.

Taking the sup of both sides,

sup
n∈N

E [|Xn|; |Xn| ≥ M ] ≤ 1

Mp−1
sup
n

E [|Xn|p] → 0 as M → ∞.

This proves that {Xn} is uniformly integrable.

Let’s prove (1). Assume that {Xn} is uniformly integrable. Choose M > 0 large such that,

sup
n∈N

E [|Xn|; |Xn| ≥ M ] ≤ 1.

Break this up exactly as was done in a previous proof:

sup
n∈N

E [|Xn|] = sup
n∈N

(E [|Xn|; |Xn| ≤ M ] + E [|Xn|; |Xn| ≥ M ])

≤ M + 1

< ∞.

This shows that {Xn} is bounded in L1(P).
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Proposition 27. Given a sequence {Xn}, X random variables on (Ω,F ,P). Then, the following state-
ments are equivalent:

1. Xn ∈ L1(P) for all n ∈ N, X ∈ L1(P) and Xn → X in L1(P).
2. The sequence {Xn | n ∈ N} is uniformly integrable and Xn → X in probability.

What this proposition tells us is that what’s missing between convergence in probability and conver-
gence in L1 is uniform integrability.

Proof. “(1) ⇒ (2)”: Assume that everything is integrable: Xn ∈ L1(P), X ∈ L1(P), and Xn → X in
L1(P). Obviously, Xn → X in probability. We need to show that {Xn} is uniformly integrable. So, we
go back to the definition. Note that the definition has nothing to do with the X, so the only technique
we can do is to force an X to appear and bound the pieces. We have that for all M > 0:

E [|Xn|; |Xn| ≥ M ] ≤ E [|Xn −X|; |Xn| ≥ M ] + E [|X|; |Xn| ≥ M ]

≤ E [|Xn −X|]︸ ︷︷ ︸
(A)

+E
[
|X|; |X| ≤

√
M and |Xn| ≥ M

]
︸ ︷︷ ︸

(B2)

+E
[
|X|; |X| >

√
M and |Xn| ≥ M

]
︸ ︷︷ ︸

(B2)

1. limn→∞(A) = 0 by assumption since Xn → X in L1.
2. We can bound (B1) using Markov’s Inequality:

E
[
|X|; |X| ≤

√
M and |Xn| ≥ M

]
≤

√
MP (|X| ≤ M ; |Xn| ≥ M)

≤
√
MP (|Xn| ≥ M)

≤
√
M

E [|Xn|]
M

1√
M

sup
n∈N

E [|Xn|] → 0 as M → ∞ because Xn → X in Lp1.

3. We can bound (B2) as follows:

E
[
|X|; |X| >

√
M and |Xn| ≥ M

]
≤ E

[
|X|; |X| >

√
M
]
→ 0 as M → ∞ bcoz X ∈ L1(P).

For all ε > 0, choose N > 0 large enough such that for all n ≥ N , (A) ≤ ε
3 . Then, choose M > 0 large

such that (B1) ≤ ε
3 and (B2) ≤ ε

3 and

E [|Xj |; |Xj | ≥ M ] ≤ ε,

for all j = 1, 2, ..., N − 1. Combining all of this together,

sup
n∈N

E [|Xn|; |Xn| ≥ M ] ≤ ε,

which shows that {Xn} is uniformly integrable.

(2) ⇒ (1): Now assume that {Xn} is uniformly integrable. Then, Xn ∈ L1 for all n ∈ N. Let
A := supn E [|Xn|] < ∞. Since Xn → X in probability, there exists a sub sequence Xnk

→ X almost
surely as k → ∞. By Fatou’s Lemma,

E [|X|] ≤ lim inf
k

E [|Xnk
|] ≤ A < ∞ ⇒ X ∈ L1.

To show L1 convergence, we’ll need a lemma.
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Lemma 6. If {Xn} is uniformly integrable and if X ∈ L1, then {Xn−X | n ∈ N} is uniformly integrable.

Proof. For all M > 0, we can bound:

E [|Xn −X|; |Xn −X| ≥ M ] ≤ E
[
|Xn|+ |X|; |Xn| ≥

M

2
or |X| ≥ M

2

]
≤ E

[
|Xn|; |Xn| ≥

M

2

]
︸ ︷︷ ︸

(A1)

+E
[
|X|; |X| ≥ M

2

]
︸ ︷︷ ︸

(A2)

+E
[
|Xn|; |X| ≥ M

2

]
︸ ︷︷ ︸

(A3)

+E
[
|X|; |Xn| ≥

M

2

]
︸ ︷︷ ︸

(A4)

We can bound (A1) - (A4) as follows:

1. (A1): supn(A1) → 0 as M → ∞ since {Xn} is uniformly integrable.
2. (A2) : (A2) → 0 as M → 0 since X ∈ L1.
3. (A3): We will bound this using Markov’s inequality:

E
[
|Xn|; |X| ≥ M

2

]
= E

[
|Xn|; |Xn| ≥

√
M and |X| ≥ M

2

]
+ E

[
|Xn|; |Xn| <

√
M and |X| ≥ M

2

]
≤ E

[
|Xn|; |Xn| ≥

√
M
]
+
√
MP

(
|X| ≥ M

2

)
≤ E

[
|Xn|; |Xn| ≥

√
M
]
+
√
M

2E [|X|]
M

→ 0 as M → ∞.

4. (A4): exactly the same. Exercise: prove that limM→∞ supn(An) = 0.

This shows that {Xn −X | n ∈ N} is uniformly integrable.

Now we are ready to go back to the proof of the theorem. Assume that {Xn| n ∈ N} is uniformly
integrable and Xn → X in probability. Then, {Xn −X} is uniformly integrable. We want to show that
Xn → X in L1. For all M > 0 and for all ε > 0:

E [|Xn −X|] = E [|Xn −X|; |Xn −X| ≥ M ]︸ ︷︷ ︸
(B1)

+E [|Xn −X|; ε ≤ |Xn −X| < M ]︸ ︷︷ ︸
(B2)

+E [|Xn −X|; |Xn −X| ≤ ε]︸ ︷︷ ︸
(B3)

Again, bound (B1)-(B3):

1. (B1): Since {Xn − X|n ∈ N} is uniformly integrable, we can take M sufficiently large such that
supn(B1) < ε.

2. (B2): We can bound:

E [|Xn −X|; ε ≤ |Xn −X| < M ] ≤ MP (|Xn −X| ≥ ε) → 0 as n → ∞.

3. (B3): Already done ≤ ε.

Therefore, E [|Xn −X|] can be made arbitrarily small for all sufficiently large n.

Hence, we have an equivalence: convergence in probability and uniform integrability ⇐⇒ L1 conver-
gence.
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4 Laws of Large Numbers (LLN)

4.1 Terminology

Given a sequence of random variables {Xn | n ∈ N} on (Ω,F ,P). For all n ≥ 1, set:

Sn :=
n∑

j=1

Xj .

We say that LLN holds for {Xn} if:

1. in the classical setting (assuming E [Xn]) exists if:

Sn − E [Sn]

n
→ 0. (63)

Depending on the nature of the convergence above, this is either a weak law of large numbers or a
strong law of large numbers:

(a) if the convergence is in probability, then it’s a Weak Law of Large Numbers.
(b) if the convergence is almost surely, then it’s a Strong Law of Large Numbers.

2. in the general setting: if there exists a sequence {an | n ∈ N} ⊆ R, {bn | n ∈ N} with bn ↑ ∞ such
that:

Sn − an
bn

→ 0. (64)

As in the classical setting, depending on the nature of the convergence, this is either a WLLN (if
the convergence is in probability) or a SLLN (if the convergence is almost surely).

To establish a WLLN/SLLN, we in general need two types of conditions.

1. Conditions on integrability.
2. Conditions on joint distributions.

Theorem 27 (WLLN 1 (Chebychev)). Let {Xn} be a sequence of random variables on (Ω,F ,P) such
that {Xn} is bounded in L2(P) i.e.: A := supn E

[
X2

n

]
< ∞ and {Xn | n ∈ N} is uncorrelated, i.e.,

Cov(Xi, Xj) = 0 for i ̸= j . Then, WLLN holds for {Xn} i.e.,

Sn − E [Sn]

n
→ 0 (65)

in probability.

Proof. WLOG, we can assume that E [Xn] = 0 for all n ∈ N. Otherwise, replace Xn by Xn − E [Xn]. So,
in this case: E [XiXj ] = 0 for all i ̸= j. Hence,

S2
n = E

 n∑
j=1

Xj

2 =
n∑

i,j=1

E [XiXj ] =︸︷︷︸
(∗)

n∑
i=1

E
[
X2

i

]
≤ An

The uncorrelation in the step (∗) is critical. Hence, we get

E
[
S2
n

]
= O(n) = o(n2). (66)
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When proving laws of large numbers, we’re always after something like (66)! The rest follows from
Chebychev / Markov: for all ε > 0,

P
(∣∣∣∣Sn

n

∣∣∣∣ > ε

)
≤

E
[
S2
n

]
n2ε2

≤ An

n2ε2
→ 0 as n → ∞.

Hence, Sn
n → 0 in probability.

In fact, under exactly the same assumptions, we can have the Strong Law of Large Numbers.

Theorem 28 (SLLN 1 (Raychman)). Under the same assumptions as WWLN 1: bounded in L2(P) and
uncorrelated, SSLN holds for {Xn}, i.e.,

Sn − E [Sn]

n
→ 0 a.s. (67)

Proof. Again, we can assume that all the expectations are zero: E [Xn] = 0 for all n ∈ N. From the
previous proof, we know that for all ε > 0:

P
(∣∣∣∣Sn

n

∣∣∣∣ > ε

)
≤ A

ε2n
for all n ∈ N. (68)

Since we want to use Borelli-Cantelli to get almost sure convergence, we need summability, so we have:

P
(∣∣∣∣Sn2

n2

∣∣∣∣ > ε

)
≤ A

ε2n2

By (BC1), for all ε > 0,

P
(∣∣∣∣Sn2

n2

∣∣∣∣ > ε i.o

)
= 0 ⇒ Sn2

n2
= 0 a.s. (E1)

Now we need to control the fluctuations. For n ≥ 1:

Dn := max
n2≤k≤(n+1)2

|Sk − Sn2 |︸ ︷︷ ︸
largest fluctuation

⇒ D2
n = max

n2≤k≤(n+1)2
|Sk − Sn2 |2 ≤

(n+1)2−1∑
k=n2+1

|Sk − Sn2 |2.

So,

E
[
D2

n

]
≤

(n+1)2−1∑
k=n2+1

E
[
|Sk − Sn2 |2

]

=

(n+1)2−1∑
k=n2+1

E
[
|Xn2+1 +Xn2+2 + ...+Xk|2

]

=

(n+1)2−1∑
k=n2+1

 k∑
j=n2+1

E
[
X2

j

]︸ ︷︷ ︸
≤A


≤ AO(n2)

≤ Cn2,
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where C is some constant. By Chebychev/Markov’s inequality, for all ε > 0:

P
(
Dn

n2
> ε

)
≤

E
[
D2

n

]
ε2n4

≤ Cn2

ε2n4
=

C

ε2n2
.

By (BC1),

P
(
Dn

n2
> ε i.o.

)
= 0 ⇒ Dn

n2
→ 0 a.s. (E2)

Both (E1) and (E2) have probability 1. For all ω such that (E1) and (E2) occur at ω, we have the
following: for all k ≥ 1, there exists a unique nk such that n2

k ≤ k ≤ (nk + 1)2 and nk ↑ ∞ as k → ∞,
with: ∣∣∣∣Sk(ω)

k

∣∣∣∣ ≤ |Sk(ω)− Sn2
k
|

n2
k

+
|Sn2

k
(ω)|

n2
k

≤ Dnk
(ω)

n2
k

+
Sn2

k
(ω)

n2
k

→ 0 as k → ∞.

Hence, (E1)∩(E2) ⊆
{
Sn
n → 0

}
. Therefore, by the monotonicity of probability, Sn

n → 0 almost surely.

4.2 More Preparation

We would like to establish LLNs without assumptions on the second moment. In this case, Chebyvhev et
al will fail. So, we have to do truncations.

Definition 33 (Equivalent Sequences). Assume that {Xn | n ∈ N} and {Yn | n ∈ N} are two sequences
of random variables on (Ω,F ,P). We say that two sequences are equivalent if

∞∑
n=1

P (Xn ̸= Yn) < ∞.

Note that if {Xn} and {Yn} are equivalent, then by (BC1),

P (Xn ̸= Yn i.o.) = 0.

Pointwise, this means that for almost every ω ∈ Ω, there exists an Nω > 0 such that Xn(ω) = Yn(ω) for
all n ≥ Nω. In this case:

1.
∑∞

n=1(Xn − Yn) converges almost surely.
2. For all {bn | ∈ N} ⊆ R+ such that bn ↑ ∞,

1

bn

n∑
j=1

(Xj − Yj) → 0 a.s.

If {Xn | n ∈ N} and {Yn | n ∈ N} are equivalent, then set Sn :=
∑n

j=1Xj and Tn :=
∑n

j=1 Yj . Take a

sequence of real numbers {bn | n ∈ N} ⊆ R+ with bn ↑ ∞. Then,

lim
n→∞

1

bn
(Sn − Tn) = 0 a.s. (69)

Theorem 29 (WLLN 2). Let {Xn} be a sequence of random variables on Ω such that the Xn’s are
identically distributed and pairwise independent and E [X1] = m ∈ R i.e. Xn ∈ L1(P) for all n ∈ N.
Then, WLLN holds for the sequence, i.e.:

Sn

n
→ m (70)

in probability.
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Proof. We cannot talk about the variance, since the second moment may not exist. So, we need to
truncate the sequence: For all n ∈ N, set

Yn := χ{|Xn|≤n} ·Xn =

{
Xn if |Xn| ≤ n

0 otherwise.
(71)

Now, Yn ∈ L2(P) and {Yn | n ∈ N} are pairwise independent ⇒ the Yn are uncorrelated. For all n ∈ N,
set:

Tn :=
n∑

j=1

Yj .

We want to first show that WLLN holds for {Yn | n ∈ N}.

Var[Tn] = E
[
(Tn − E [Tn])

2
]

=
n∑

j=1

E
[
(Yj − E [Yj ])

2
]
(because the covariance is zero for i ̸= j

≤
n∑

j=1

E
[
Y 2
j

]
The goal is to show that

∑n
j=1 E

[
Y 2
j

]
is o(n2). Let’s see some approaches that will fail:

1. Try:

n∑
j=1

E
[
Y 2
j

]
≤

n∑
j=1

j3 = O(n3).

This one is not good enough.
2. Try:

n∑
j=1

E
[
Y 2
j

]
≤

n∑
j=1

jE
[
Y 2
j

]
≤

n∑
j=1

jE [|Xj |] = E [|X1|]
n∑

j=1

j = O(n2).

This is better, but still not good enough.

We are not there yet. In particular, we are not using in the second inequality that all of the Xj ’s are
integrable, so we know that the tails are shrinking. This is how we’re supposed to use that.

n∑
j=1

E
[
Y 2
j

]
≤

n∑
j=1

E
[
X2

j ; |Xj | ≤ j
]

=

√
n∑

j=1

E
[
X2

j ; |Xj | ≤ j
]

︸ ︷︷ ︸
(A1)

+
n∑

j=
√
n+1

E
[
X2

j ; |Xj | ≤
√
n
]

︸ ︷︷ ︸
(A2)

+
n∑

j=
√
n+1

E
[
X2

j ;
√
n < |Xj | ≤ j

]
︸ ︷︷ ︸

(A3)



Math 587: Advanced Probability Fall 2021 Page 47

To bound (A1)-(A3):

(A1) ≤

√
n∑

j=1

jE [|X1|] = O(n) = o(n2).

(A2) ≤
n∑

j=
√
n+1

√
nE [|X1|] = O(n3/2) = o(n2).

(A3) ≤
n∑

j=
√
n+1

jE
[
|Xj |; |Xj | >

√
n
]
= E

[
|X1|; |X1| ≥

√
n
]︸ ︷︷ ︸

→0 as n→∞

 n∑
j=

√
n+1

j


︸ ︷︷ ︸

O(n2)

= o(n2)

Therefore Var[Tn] = o(n2). By Chebychev’s inequality, for all ε > 0:

P
(
(Tn − E [Tn]

n
> ε

)
→ 0 as n → ∞.

Hence,

Tn − E [Tn]

n
→ 0 in probability.

Now, we need to TTn to show the desired result:∣∣∣∣Sn

n
−m

∣∣∣∣ = Sn − nm

n

≤ |Sn − Tn|
n︸ ︷︷ ︸

(B1)

+
|Tn − E [Tn] |

n︸ ︷︷ ︸
(B2)

+
|E [Tn]− nm|

n︸ ︷︷ ︸
(B3)

Claim: Xn and Yn are equivalent. The proof follows from the result from Homework 3.

∞∑
n=1

P (Xn ̸= Yn) =

∞∑
n=1

P (Xn > n) =

∞∑
n=1

P (|X1| > n) < ∞

because E [|X1|] < ∞. Since Xn and Yn are equivalent, (B1) → 0 almost surely and (B2) → 0 in
probability as proven. All we need to do is work on (B3):

(B3) =
1

n

∣∣∣∣∣∣
n∑

j=1

(E [Yj ]− E [Xj ])

∣∣∣∣∣∣
=

1

n

∣∣∣∣∣∣
n∑

j=1

E [Yj −Xj ]

∣∣∣∣∣∣
=

1

n

∣∣∣∣∣∣
n∑

j=1

E [|Xj |; |Xj | > j]

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

E [|Xj |; |Xj | > j]

=
1

n

n∑
j=1

E [|X1|; |X1| > j] .
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Now, if {an | n ∈ N} ⊆ R such that limn→∞ an = 0, then 1
n

∑n
j=1 aj → 0 as n → ∞. To see this, for all

ε > 0, there exists an N > 0 such that |an| < ε for all n ∈ N:∣∣∣∣∣∣ 1n
n∑

j=1

aj

∣∣∣∣∣∣ ≤ 1

n

N∑
j=1

|aj |︸ ︷︷ ︸
→0

+
1

n

n∑
j=N+1

|aj |︸ ︷︷ ︸
≤ε

,

which can be made arbitrarily small when n is large. Since X1 ∈ L1(P), limn→∞ E [|X1|; |X1| > n] = 0 ⇒
1
n

∑n
j=1 E [|X1|; |X1| > j] → 0 as n → ∞. Thus, (B3) → 0 as n → ∞. Therefore,∣∣∣∣Sn

n
−m

∣∣∣∣→ 0

in probability.

Theorem 30 (WLLN 3 (Kolmogorov & Feller)). Let Xn be a sequence of pairwise independent random
variables on Ω. Assume that there exists a sequence {bn | n ∈ N} with bn ↑ ∞ such that:

1.
∑n

j=1 P (|Xj | > bn) → 0 as n → ∞.

2. 1
b2n

∑n
j=1 E

[
X2

j ; |Xj | ≤ bn

]
→ 0 as n → ∞.

Then, WLLN holds in the general setting for Xn i.e., if

an =

n∑
j=1

E [Xj ; |Xj | ≤ bn] ,

then Sn−an
bn

→ 0 in probability.

Proof. This is HW 4 Problem 2. Here’s a hint: For all n ≥ 1, ∀ j = 1, ..., n, set

Yn,j = χ{|Xj |≤bn}Xj =

{
Xj if |Xj | ≤ bn

0 otherwise

Set Tn =
∑n

j=1 Yn,j . First prove that Tn−E[Tn]
bn

→ 0 in probability.

Lemma 7 (Kronecker’s Lemma). Let {xk | k ∈ N} ⊆ R, {ak | k ∈ N} ⊆ R+ with ak ↑ ∞. Then,

∞∑
n=1

xn
an

converges ⇒ 1

an

n∑
j=1

xj → 0 as n → ∞.

Proof. Do later.

Lemma 8 (Kolmogorov’s Inequality). Let Xn be a sequence of independent random variables with
E [Xn] = 0 and E

[
X2

n

]
< ∞ for all n ∈ N. Then,

P
(

max
1≤j≤n

|Sn| > ε

)
≤ 1

ε2
E
[
S2
n

]
(72)
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Proof. Write A := {max1≤j≤n |Sj | > ε}. Then,

A =
n⋃

j=1

Aj ,

where Aj = {|Si| < ε for all 1 ≤ i ≤ j − 1, |Sj | > ε}. In words, Aj means the first time that |Sn| goes
above ε happens at n = j. The Aj ’s are disjoint. Now,

E
[
S2
n

]
≥ E

[
S2
n;A

]
=

n∑
j=1

E
[
S2
n;Aj

]
=

n∑
j=1

E
[
(Sn − Sj + Sj)

2;Aj

]
=

n∑
j=1

E
[
(Sn − Sj)

2;Aj

]
+ 2

n∑
j=1

E
[
(Sn − Sj)SjχAj

]
+

n∑
j=1

E
[
S2
j ;Aj

]
≥

n∑
j=1

E
[
S2
j ;Aj

]
≥ ε2

n∑
j=1

P (Aj)

= εP (A) .

This proves that

P (A) = P
(

max
1≤j≤n

|Sj | > ε

)
≤ 1

ε2
E
[
S2
n

]

Theorem 31. If {Yn | n ∈ N} is a sequence of independent random variables and E [Yn] = 0 and∑∞
n=1 E

[
Y 2
n

]
< ∞ . Then,

∑∞
n=1 Yn converges almost surely. That is, if

Tn :=

n∑
j=1

Yj , (73)

then limn→∞ Tn exists in R almost surely.

Proof. We’ll use Kolmogorov’s Inequality. Fix N > 0, and apply Kolmogorov’s inequality to the sequence
starting from N : {YN+j | j ∈ N}. Set:

Km :=
m∑
j=1

YN+j for m ∈ N.

By Kolmogorov’s Inequality, for all ε > 0,

P
(

max
1≤j≤n

|Kj | > ε

)
≤ 1

ε2
E
[
K2

n

]
=

1

ε2

n∑
k=1

E
[
Y 2
N+j

]
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Notice that max1≤j≤n |Kj | ↑ supj≥1 |Kj |. So, we will use the continuity of probability to change the sup
from the max, and apply the bounds above. So, for all ε > 0,

P

(
sup
j≥1

|Kj | > ε

)
= lim

n→∞
P
(

max
1≤j≤n

|Kj | > ε

)

≤ 1

ε2

∞∑
j=1

E
[
Y 2
N+j

]
=

1

ε2

∞∑
j=N+1

E
[
Y 2
j

]
this goes to zero as N → ∞ by the second integrability condition. Thus, set:

WN := sup
n≥N+1

∣∣∣∣∣
n∑

k=N+1

Yk

∣∣∣∣∣ .
Then, for all ε > 0, P (Wn > ε) → 0 as N → ∞. Next set:

W ′
N := sup

n′≥n≥N+1

∣∣∣∣∣
n′∑

k=n

Yk

∣∣∣∣∣︸ ︷︷ ︸
|Tn′−Tn|

.

By the triangle inequality W ′
N ≤ 2WN . Therefore,

W ′
N → 0 in probability. (74)

Since W ′
N is decreasing in N , we have a monotonic sequence converging in probability which means that

it converges almost surely. That is {Tn | n ∈ N} is a Cauchy sequence almost surely. Hence,

lim
n→∞

Tn exists in R almost surely.

Theorem 32 (SLLN2 (Kolmogorov)). Let {Xn | n ∈ N} be a sequence of independent random variables
with E

[
X2

n

]
< ∞ for all n ∈ N and if there exists a sequence {bn | n ∈ N} ⊆ R+ with bn ↑ ∞ such that

∞∑
n=1

Var[Xn]

b2n
< ∞.

Then, the SLLN holds in the sense that:

Sn − E [Sn]

bn
→ 0 almost surely. (75)

Before the proof, we remark that if Var[Xn] is bounded in n, then we could take bn to be n, which
reduces us to (SLLN 1).

Proof. Set Yn := Xn−E[Xn]
bn

for all n ∈ N. Then, {Yn | n ∈ N} is independent and E [Yn] = 0 and∑∞
n=1 E

[
Y 2
n

]
=
∑∞

n=1
Var[Xn]

bn
< ∞. By the previous theorem, this tells us that

∞∑
n=1

Yn =

∞∑
n=1

Xn − E [Xn]

bn
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converges almost surely. By Kronecker’s Lemma,

lim
n→∞

1

bn

n∑
j=1

(Xj − E [Xj ]) = 0 almost surely.

Theorem 33 (SLLN 3 (Kolmogorov)). Let {Xn} be a sequence of iid random variables. Then,

1. If E [|X1|] < ∞, then,

Sn

n
→ E [X1] almost surely. (76)

2. If E [|X1|] = ∞ then:

lim sup
n→∞

|Sn|
n

= ∞ almost surely (77)

Proof. (ii) Assume that E [|X1|] = ∞. Then, for all A > 0,

E
[
|X1|
A

]
= 0. (78)

Then, by the homework, this implies that:

⇒
∞∑
n=1

P (|X1| > An) = ∞

⇒
∞∑
n=1

P (|Xn| > An) = ∞ (by the iid condition)

Since the Xn’s are independent, by (BC2), we can conclude that P (|Xn| > An i.o.) = 1. We have:

{|Xn| > An} = {|Sn − Sn−1|}

⊆
{
|Sn| >

An

2

}
∪
{
|Sn−1| >

An

2

}
⊆
{
|Sn| >

A

2
n

}
∪
{
|Sn−1| >

A

2
(n− 1)

}
Since we matched the indices, this means that

⇒ {|Xn| > An i.o. } ⊆
{
|Sn| >

A

2
n i.o.

}
⇒ P

(
|Sn|
n

>
A

2
i.o.

)
Hence, lim supn→∞

|Sn|
n ≥ A

2 almost surely. Since A is arbitrary, this means that lim supn→∞
|Sn|
n = 0

almost surely.

(i). Assume that E [|X1|] < ∞. Truncate the Xn:

Yn = Xnχ{|Xn|≤n}
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Let’s check that they are equivalent:

∞∑
n=1

P (Xn ̸= Yn) =
∞∑
n=1

P (|Xn| > n) =
∞∑
n=1

P (|X1| > n) < ∞,

because E [|X1|] < ∞. This shows that {Yn} is equivalent to {Xn}. {Yn} is also independent, and
E
[
Y 2
n

]
< ∞. Now bound:

∞∑
n=1

Var[Yn]

n2
≤

∞∑
n=1

E
[
Y 2
n

]
n2

=
∞∑
n=1

E
[
X2

n; |Xn| ≤ n
]

n2

≤
∞∑
n=1

1

n2

n∑
j=1

E
[
|Xn|2; j − 1 ≤ |Xn| ≤ j

]
=

∞∑
j=1

1

n2

n∑
j=1

E
[
|X1|2; j − 1 ≤ |X1| ≤ j

]
=

∞∑
j=1

∞∑
n=j

1

n2
E
[
|X1|2; j − 1 ≤ |X1| ≤ j

]
⇒ ∃C > 0 s.t. ≤ C

∞∑
j=1

1

j
E
[
|X1|2; j − 1 ≤ |X1| ≤ j

]
≤ C

∞∑
j=1

1

j
jE [|X1|; j − 1 ≤ |X1| ≤ j]

= CE [|X1|]
< ∞.

Hence,
∑∞

n=1
Var[Yn]

n2 < ∞. Since the Yn’s are independent, the (SLLN) holds for the Yn, i.e., if Tn =∑n
j=1 Yj , then by SSLN 2,

Tn − E [Tn]

n
→ 0 almost surely

Now we do the same thing we did last time we truncated.

|Sn − E [Sn] |
n

≤ |Sn − Tn|
n

+
|Tn − E [Tn] |

n
+

|E [Tn]− E [Sn] |
n

The first term in the bound will go to 0 almost surely because {Yn} and {Xn} are equivalent. The second
term we just proved goes to 0 almost surely. For the third term,

|E [Tn]− E [Sn] |
n

≤ 1

n

n∑
j=1

E [|Xj |; |Xj | > j]

=
1

n

n∑
j=1

E [|X1|; |X1| > j] .

This will tend to zero, since E [|X1|; |X1| > n] → 0 as n → ∞. Combining all of this, this shows that
Sn
n → E [X1] almost surely.
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Theorem 34 (SLLN 4). Let {Xn | n ∈ N} be a sequence of independent random variables and assume
that E [|Xn|] < ∞ for all n ∈ N. Assume that there exists a function φ : R → R+ continuous, even, such

that φ(x)
x is increasing on ]0,∞[ and φ(x)

x2 is decreasing on ]0,∞[, and there exists a sequence {bn} ⊆ R+

with bn ↑ ∞ such that:

∞∑
n=1

E [φ(Xn)]

φ(bn)
< ∞.

Then,

∞∑
n=1

Xn − E [Xn]

bn

converges almost surely and hence Sn−E[Sn]
bn

→ 0 almost surely.

Proof. Homework.

Theorem 35 (Weierstrass Theorem). Let f : [0, 1] → R be a continuous function. For every n ∈ N,
define:

pn(x) :=
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k, (79)

for x ∈ [0, 1]. pn(x) is called the Bernstein Polynomial Associated with f . Then,

lim
n→∞

sup
x∈[0,1]

|pn(x)− f(x)| = 0. (80)

In other words, f is uniformly approximated by Bernstein’s Polynomials.

Proof. First let’s establish pointwise convergence. The convergence at the end points is trivial:

1. limn→∞ pn(0) = f(0).
2. limn→∞ pn(1) = f(1).

Fix an x ∈]0, 1[. Consider the following sequence of iid Bernoulli random variables {Xn | n ∈ N} on
(Ω,F ,P) such that P (X1 = 1) = x and P (X1 = 0) = 1− x. If Sn =

∑n
j=1Xj , then

P (Sn = k) =

(
n

k

)
xk(1− x)n−k.

Hence, taking the expected value, we get:

E
[
f

(
Sn

n

)]
=

n∑
k=0

f
(n
k

)
P (Sn = k) = pn(x).

Since f is continuous, we know that by the SLLN (or could use WLLN),

Sn

n
→ x a.s. ⇒ f

(
Sn

n

)
→ f(x) a.s

Now use the Dominated Convergence Theorem (which we can use since f is continuous on [0, 1] and so
it’s bounded on [0, 1]. Hence,

E
[
f

(
Sn

n

)]
→ f(x). (81)
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Hence, for all x ∈ [0, 1], we have limn→∞ pn(x) = f(x) i.e., we’ve established pointwise convergence. Now
note that f is uniformly continuous on [0, 1]. Hence,

∀ ε > 0, ∃ δ > 0 s.t. |x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ε.

Hence,

|pn(x)− f(x)| =
∣∣∣∣E [f (Sn

n

)]
− f(x)

∣∣∣∣
≤ E

[∣∣∣∣f (Sn

n

)
− f(x)

∣∣∣∣]
= E

[∣∣∣∣f (Sn

n

)
− f(x)

∣∣∣∣ ; ∣∣∣∣Sn

n
− x

∣∣∣∣ > δ

]
︸ ︷︷ ︸

(A1)

+E
[∣∣∣∣f (Sn

n

)
− f(x)

∣∣∣∣ ; ∣∣∣∣Sn

n
− x

∣∣∣∣ ≤ δ

]
︸ ︷︷ ︸

(A2)

(A2) is automatically less than ε by the uniform continuity of f on [0, 1]. For (A1) we do the same trick
as before:

(A1) ≤ 2MP
(∣∣∣∣Sn

n
− x

∣∣∣∣ > δ

)
where M = supx∈[0,1]. By Chebychev, we can bound this as:

M = sup
x∈[0,1]

|f(x)| ≤
2MVar[Sn

n ]

δ2
=

2MVar[Sn]

n2δ2
= 2M

nx(1− x)

n2δ2
.

This quantity goes to 0 as n → ∞. Hence, we can conclude:

sup
x∈[0,1]

|pn(x)− f(x)| ≤ 2M

nδ2

(
sup

x∈[0,1]
x(1− x)

)
+ ε

≤ M

2nδ2
+ ε,

which again can be made arbitrarily small when n is sufficiently large. Hence,

lim
n→∞

sup
x∈[0,1]

|pn(x)− f(x)| = 0.

Example 15. Let {Xn | n ∈ N} be a sequence of random variables on a probability space (Ω,F ,P) such
that:

P (X1 = 1) = p and P (X1 = 0) = 1− p,

for p ∈]0, 1[. Next, define a random variable T : Ω → [0, 1] as follows:

T (ω) =
∞∑
n=1

Xn(ω)

2n
.

Denote by µp the distribution of T , i.e., µp is a probability measure on ([0, 1],B([0, 1])). Denote by Fp

the distribution function of T .

Claim: Fp is continuous on R, i.e., the map µp({x}) = 0 for all c ∈ [0, 1]. Set Q to be the set of
Dyadic rationals:

Q = {m2n | n ∈ N,m = 0, ..., 2n}. (82)

There are two cases:
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1. c ∈ Q and T = c for every ω ∈ {T (ω) = c}, then either:

(a) Xn(ω) = 1 for all but finitely many n.
(b) Xn(ω) = 0 for all but finitely many n.

But, P ( either of the above events happen) = 0 because limn→∞(p∨(1−p))n = 0. Hence, P (T = c) =
0 which shows that µp({c}) = 0.

2. Suppose c is not a dyadic rational. Then, for a given n ∈ N, ∃1 m ∈ {0, ..., 2n} such that:

(m− 1)2−n < c < m2−n.

Hence,

{T = c} ⊆ {ω ∈ Ω | X1(ω) = ξ1, ..., Xn(ω) = ξn},

for a unique (ξ1, ..., ξn) ∈ {0, 1}n. Hence,

P (T = c) ≤ (p ∨ (1− p))n → 0 as n → ∞.

Hence, µp({c}) = 0 which shows that Fp is continuous.
(Do the rest of this example later).

Theorem 36 (Levy’s Equivalence Theorem). Let {Xn | n ∈ N} be a sequence of independent random
variables. Then, Sn → S in probability for some random variable S ⇐⇒ Sn → S almost surly.

Proof. The “⇐” direction is trivial, so all we need to do is the “⇒” direction. Assume that Sn → S in
probability. Then, for all ε > 0, there exists an N ≥ 0 such that for all n ≥ N ,

P (|Sn − S| > ε/2) ≤ ε

2
.

Hence, by the triangle inequality for probabilities, for all m,n ≥ N ,

P (|Sm − Sn| > ε) ≤ P (|Sn − S| > ε/2) + P (|Sm − S| > ε/2) ≤ ε.

Hence, {Sn | n ∈ N} is a Cauchy Sequence in the sense of probability. Now assume that m > n. Then,

ε ≥ P (|Sm − Sn| > ε)

≥ P
(
|Sm − Sn| > ε, max

n≤k≤m
|Sk − Sn| ≥ 2ε

)
=

m∑
k=n+1

P
(
|Sm − Sn| > ε, max

n≤j≤k−1
|Sj − Sn| < 2ε, |Sk − Sn| > 2ε

)
We want to make use of independence, but the indices overlap. So we need a smaller event. Hence,

≥
m∑

k=n+1

P
(
|Sm − Sk| > ε, max

n≤j≤k−1
|Sj − Sn| < 2ε, |Sk − Sn| > 2ε

)

=

m∑
k=1

P (|Sm − Sk| < ε)P
(

max
n≤j≤k+1

|Sj − Sn| ≤ 2ε, |Sk − Sn| > 2ε

)
≥ (1− ε)P

(
max

n≤j≤k+1
|Sj − Sn| ≤ 2ε, |Sk − Sn| > 2ε

)
= (1− ε)P

(
max

n≤k≤m
|Sk − Sn| > 2ε

)
.
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Re-arranging, this gives us:

P
(
max
n≤≤m

|Sk − Sn| > 2ε

)
≤ ε

1− ε
⇒ P

(
sup
k≥n

|Sk − Sn| > 2ε

)
≤ ε

1− ε
(83)

⇒ sup
k≥n

|Sk − Sn| → 0 in probability. (84)

Following the same proof as in the case of a previous theorem, we can then conclude that Sn is a Cauchy
Sequence almost surely. Hence, Sn → S almost surely.

5 Product Space

Let (S1,Σ1) and (S2,Σ2) be two measurable spaces. Define S = S1×S2 = {s = (s1, s2) | si ∈ Si, i = 1, 2}.
Define the product sigma algebra as:

Σ = Σ1 ⊗ Σ2 := σ({B1 ×B2 | Bi ∈ Σi, i = 1, 2}).

Here, B1 × B2. are rectangles. This set of rectangles is a generating π-system. For i = 1, 2, ρi : S → Si

is the coordinate map, ρi(s1, s2) = si for all (s1, s2) ∈ S. This reduces the dimension. Some remarks:

1. ρi : S → Si is Σ \ Σi-measurable. In other words, one has:

∀ B1 ∈ Σ1, φ
−1
1 (B1) = B1 × S2 ∈ Σ.

and,

∀ B2 ∈ Σ2, φ
−1(B2) = S1 ×B2 ∈ Σ.

2. Σ = σ(ρ1, ρ2) the product sigma algebra is the smallest sigma-algebra with respect to which ρ1 and
ρ2 are measurable. To quickly see this, note that LHS ⊇ RHS, as seen in the remark above. For the
other inclusion, we need to show that all the elements of the generating sigma-algebra are in RHS.
For all Bi ∈ Σi, i = 1, 2,

B1 ×B2 = ρ−1
1 (B1) ∩ ρ−1

2 (B2) ∈ σ(ρ1, ρ2).

This is what we wanted to show.

Lemma 9. If f : S → R is Σ-measurable, then:

1. ∀ s1 ∈ S1, the function s2 ∈ S2 7→ f(s1, s2) ∈ R is Σ2-measurable.
2. ∀ s2 ∈ S2, the function s1 ∈ S1 7→ f(s1, s2) ∈ R is Σ1-measurable.

In other words, measurability with respect to the product σ-algebra ⇒ measurability with respect to the
coordinate σ-algebra.

Proof. We prove this using the Monotone Class Theorem. Set:

H := {f ∈ mΣ | (i) and (ii) hold for f}. (85)

Claim: H is a monotone class of measurable functions. To see this:

1. H is a vector space → obvious ✓.
2. 1 ∈ H: → measurable with respect to everything ✓.
3. fn ∈ H, fn ≥ 0, fn ↑ f ⇒ f ∈ H → limit of measurable functions is measurable.
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Next, we need to show that the basic roots are in H. Call:

I := {B1 ×B2 | Bi ∈ Σi for i = 1, 2}.

Clearly, I is a π-system generating Σ. Now, for all A ∈ I, assume that A = B1 × B2. Then, it’s the
product of indicator functions:

χA(s1, s2) = χB1(s1) · χB2(s2).

Obviously, χA ∈ H. So, by the monotone class theorem, we may conclude that mΣ ⊆ H. Hence,
mΣ = H.

Preparation: for i = 1, 2, assume that µi is a finite measure on (Si, µi). Given f : S → R, if
f ∈ (mΣ)+ or f ∈ bΣ, define the following two functions:

1. for s1 ∈ S1, define the integral where we integrate the second coordinate out:

If1 (s1) :=

∫
S2

f(s1, s2)µ2(dS2). (86)

2. for s2 ∈ S2, define the integral where we integrate the first coordinate out:

If2 (s2) :=

∫
S1

f(s1, s2)µ1(dS1). (87)

We are ready to state and prove the first version of Fubini’s Theorem.

Lemma 10. If f ∈ (bΣ), then Ifi ∈ bΣi for i = 1, 2. Moreover,∫
S1

If1 (s1)µ1(dS1) =

∫
S2

If2 (s2)µ2(dS2). (88)

Explicitly, the order of doing the integral doesn’t matter:∫
S1

(∫
S2

f(s1, s2)µ2(dS2)

)
µ1(dS1) =︸︷︷︸

(∗)

∫
S2

(∫
S1

f(s1, s2)µ1(dS1)

)
µ2(dS2). (89)

Proof. The proof will follow the same strategy as before. Set:

S := {f ∈ bΣ | Ifi ∈ bΣi for i = 1, 2, and (∗) holds for f}. (90)

We need to check that H is a Monotone Class of bounded functions (we do not need to worry about the
integral being infinite).

1. H is a vector space: ✓by the linearity of integrals.
2. 1 ∈ H: ✓since both sides of (∗) are equal to µ1(S1)µ2(S2).
3. If fn ∈ H and fn ≥ 0, fn ↑ f , then f ∈ H. This one follows from the Monotone Convergence

Theorem (MON).

Let’s check if we have the right roots. Let A = B1 ×B2. Then,

χA(s1, s2) = χB1(s1)χB2(s2). (91)

Then, for all s1 ∈ S1,

IχA
1 (s1) =

∫
S2

χA(s1, s2)µ2(dS2) = χB1(s2)µ2(B2). (92)

Similarly, for all s2 ∈ S2:

IχA
2 (s2) =

∫
S1

χA(s1, s2)µ1(dS1) = µ1(B1)χB2(s2). (93)

This shows that IχA
1 ∈ bΣi and (*) holds. Hence, χA ∈ H. By the MCT, bΣ =.
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Corrolary 3. If f ∈ (mΣ)+, then Ifi ∈ (mΣi)
+ for i = 1, 2 and (*) holds for f .

Theorem 37 (Fubini’s Theorem). Let (Si,Σi, µi), i = 1, 2 be two measure spaces. Let µ1 and µ2 be finite
masures. We define the following set function on Σ:

µ : Σ → [0,∞[

by: for all A ∈ Σ,

µ(A) :=

∫
S1

SχA
1 (s1)µ1(dS1) =

∫
S2

IχA
2 (s2)µ2(dS2). (94)

Then,

1. µ is a finite measure on (S,Σ) denoted by µ = µ1 × µ2. This is called the product measure.

(a) We write (S,Σ, µ) = (S1,Σ1, µ1)× (S2,Σ2, µ2).

2. µ is the unique measure on S such that:

∀Bi ∈ Σi, i = 1, 2, µ(B1 ×B2) = µ1(B1) · µ2(B2).

3. (Tonelli’s Theorem): if f ∈ (mΣ)+, then:

µ(f) =︸︷︷︸
(†)

∫
S1

If1 (S1)µ1(dS1) =︸︷︷︸
(∗)

∫
S2

If2 (S2)µ2(dS2). (95)

4. (Fubini’s Theorem): if f ∈ L1(µ), then If1 ∈ L1(µ1) and If2 ∈ L2(µ2). Moreover,

µ(f) =︸︷︷︸
(†)

µ1(I
f
1 ) =︸︷︷︸

(△)

µ2(I
f
2 ) (96)

(This statement means that integrability with respect to the product measure ⇒ integrability with
respect to the coordinate measures (product measure is stronger than coordinate measures).

Proof. 1. We need to show that µ is a measure first. It’s clear that µ(∅) = 0. Let {An | n ∈ N} ⊆ Σ
be disjoint. For m ≥ 1, set Bm :=

⋃m
u=1An. Then, by the disjointness,

χBm =

m∑
n=1

χAn .

Moreover,

χBm ↑
∞∑
n=1

χAn = χ⋃∞
n=1 An

.

So, by definition, for all s1 ∈ S1, we have:

I
χ⋃∞

n=1 An

1 (s1) =

∫
S2

χ⋃∞
n=1 An

(s1, s2)µ2(dS2).

By the Monotone Convergence Theorem (MON) and by the linearity of integration, this becomes:

=

∞∑
n=1

∫
S2

χAn(s1, s2)µ2(dS2).

Therefore,

µ

( ∞⋃
n=1

An

)
=

∫
S1

I
χ⋃∞

n=1 An

1 (s1)µ1(dS1) =︸︷︷︸
(MON)

∞∑
n=1

∫
S1

∫
S2

χAn(s1, s2)µ2(dS2) =

∞∑
n=1

µ(An).



Math 587: Advanced Probability Fall 2021 Page 59

2. Now we need to prove that µ is the unique measure. Suppose µ′ is another measure on (S,Σ) such
that:

µ′(B1 ×B2) = µ1(B1) · µ2(B2),

for all Bi ∈ Σi for i = 1, 2. Note that

µ(S) = µ(S1 × S2) = µ1(S1) · µ2(S2) = µ′(S).

Since µ(S) = µ(S1 × S2) = µ1(S1)µ2(S2) on a π-system, I = {B1 × B2 | Bi ∈ Σi for i = 1, 2}, by
the Uniqueness of Measure Theorem, µ = µ′ on the entire sigma algebra Σ = σ(I).

3. Tonelli’s Theorem: (△) has already been proven; all that’s left to establish is (†). First, (†) holds
for indicator functions. Next, by the linearity of integrals, (†) holds for (SF )+. Next, by (MON),
(†) holds for all f ∈ (mΣ)+.

4. If f ∈ L1(µ), then µ(|f |) < ∞. Hence, µ(f±) < ∞. By (iii), (†) holds for f±, i.e.,

µ(f±) =

∫
S1

If
±

1 (s1)µ1(dS1).

Now,

µ(f±) < ∞ ⇐⇒ If
±

1 ∈ L1(µ1) ⇒ If
±

1 < ∞ µ1-a.e..

Similarly, If
±

2 ∈ L1(µ2) and I
±
2 < ∞ µ2-a.e. Now write f = f+ − f−. Then, (†) and (△) follow

from (Linearity).

Some Remarks.

1. Fubini’s Theorem also applies to µi being σ-finite. Just cut the space up. For example, take a
sequence of rectangles {Tn

1 ×Tn
2 | n ∈ N} such that Tn

i ∈ Σi for i = 1, 2 such that Tn
1 ×Tn

2 ↑ S1×S2

and µi is finite on Tn
i for all n ∈ N for i = 1, 2.

2. f ∈ mΣ ⇒ f(s1, ·) ∈ mΣ2 and f(·, s2) ∈ mΣ1. In general, the opposite implication does not
necessarily hold.

3. f ∈ L1(µ) ⇒ If1 ∈ L1(µ1) and If2 ∈ L2(µ2). In general, the reverse implication does not necessarily
hold.

Consider the following counter-example to illustrate this point: set S = {(x, y) | x − 1 < y < x + 1}.
Then,

f(x, y) =


1 if x < y < x+ 1

−1 if x− 1 ≤ y ≤ x

0 otherwise.

Then, for all x ∈ R,
∫
R f(x, y)dy = 0 ⇒ If1 ≡ 0 ⇒ If1 ∈ L1(dx). Similarly, for all y ∈ R,

∫
R f(x, y)dy =

0 ⇒ If2 ≡ 0 ⇒ If2 ∈ L1(dy). But, f /∈ L1(dxdy) because:∫
R2

|f(x, y)|dxdy = ∞. (97)

Hence, integrability on the product space is a strictly stronger condition than integrability on the coordi-
nates. Before going back to probability spaces, remark that

(Rn,B(Rn), λLeb) = (R,B(R), λ)n.
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5.1 Back to Probability Space

Definition 34 (Joint Distribution Function). Let X and Y be random variables on (Ω,F ,P). Then,
F(X,Y ) is the joint distribution function of (X,Y ) if ∀(x, y) ∈ R2,

F(X,Y )(x, y) = P (X ≤ x, Y ≤ y) . (98)

Some terminology:

1. L(X,Y ) is the joint distribution of (X,Y ). It’s a probability measure on (R2,B(R2)) such that for all
A ∈ B(R2),

L(X,Y )(A) = P ((X,Y ) ∈ A)

2. If L(X,Y ) is absolutely continuous with respect to λ2
Leb = dxdy, then the RN derivative,

f(X,Y ) =
dL(X,Y )

dxdy
, (99)

is the joint probability density function of (X,Y ).

Proposition 28. If (X,Y ) has the joint probability function f(X,Y ) then for all x ∈ R,

fX(x) :=

∫
R
f(X,Y )(x, y)dy (100)

is a probability density of X. Moreover, for all y ∈ R,

fY (y) :=

∫
R
f(X,Y )(x, y)dx (101)

is a probability density of Y .

Proof. These are marginal densities. For all B ∈ B(R),

LX(B) = P (X ∈ B)

= P (X ∈ B, Y ∈ R)

=

∫∫
B×R

f(X,Y )(x, y)dxdy (by the existence of the joint density)

=

∫
B

(∫
R
f(X,Y )(x, y)dy

)
dx (Tonelli’s theorem)

Therefore, for all B ∈ B(R),

LX(B) =

∫
B
fX(x)dx.

Proposition 29. Assume X and Y have distributions L(X,Y ), X has distribution LX with distribution
function FX , and Y has distribution LY with distribution function FY . Then, TFAE:

1. X and Y are independent.
2. For all x, y ∈ R,

F(X,Y )(x, y) = FX(x)FY (y). (102)

3. L(X,Y ) = LX × LY .

In particular, if (X,Y ) has a joint density function f(X,Y ), then (i)-(iii) are equivalent to

f(X,Y )(x, y) = fX(x)fY (y).

Proof. The key idea for the proof of “(ii) ⇒ (iii)” is that {]−∞, x]×]−∞, y] | x, y ∈ R} is a generating
π-system of B(R2).
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5.1.1 Product of Infinitely Many Spaces

Let {(Ωi,Fi,Pi) | i ∈ N} be a sequence of probability spaces. Set Ω =
∏∞

i=1Ωi. Then, for all ω ∈ Ω, ω is
an infinite vector: ω = (ω1, ω2, ω3, ...) where ωn ∈ Ωn. Consider the following “cylinder sets”:

E :=
∞∏
n=1

Fn, where Fn ∈ Fn ∀n ∈ N,

and Fn = Ωn for all but finitely many n, i.e.,

E = F1 × F2 × F3 × ...× Fn × Ωn+1 × Ωn+2 × ...

Set:

Σ0 =

{
K⋃
k=1

E(k)

∣∣∣∣ K ∈ N and E(k) are disjoint cylinder sets

}
Σ0 is an algebra. Set F = σ(Σ0). Let’s define a candidate measure. Define the following set function of
Σ0:

E ∈ Σ0 set: E :=
K⋃
k=1

E(k),

where E(k) =
∏∞

n=1 F
(k)
n . Then,

P (E) =
K∑
k=1

∞∏
n=1

Pn(F
(k)
n )

One can verify that indeed P can be extended to F as a measure. Check that P is additive on Σ0 and
that it’s continuous at the empty set. One would use Caratheodory’s Extension Theorem to check
this (if we wanted to). The first one to check would be relatively easy, but checking the second condition
requires more work.

Theorem 38 (Kolmogorov Extension Theorem). Let {µn | n ∈ N} be a sequence of probability measures
on (R,B(R)). Then, there exists a probability space (Ω,F ,P) and random variables {Xn | n ∈ N} on Ω
such that ∀ n ∈ N,

LXn = µn,

and the {Xn | n ∈ N} are independent.

What’s significant about this is that we can put the probability measures on the same probability
space and they can be independent. This has applications in optimal control.

Proof. For all n ∈ N, there exists a probability space (Ωn,Fn,Pn) and random variables Yn on Ωn such
that LYn = µn. Set our candidate probability space to be the infinite product,

(Ω,F ,P) =
∞∏
n=1

(Ωn,Fn,Pn).

For all random vectors ω ∈ Ω, it has components ω = (ω1, ω2, ω3, ...) with components ωn ∈ Ωn. For
n ∈ N, define:

Xn : Ω → R,
ω = (ω1, ω2, ω3, ...) 7→ Xn(ω) = Yn(ωn).
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Hence, Xn is a random variable, and for all B ∈ B(R),

X−1
n (B) = {ω ∈ Ω | Xn(ω) ∈ B}

= Ω1 × Ω2 × ...× Ωn−1 × Y −1
n (B)× Ωn+1 × ...

Hence,

P
(
X−1

n (B)
)
= P

n−1∏
j=1

Ωj × Y −1
n (B)×

∏
j≥n+1

Ωj


= Pn(Y

−1
n (B))

= µn(B).

This shows that LXn = µn. Now we need to show independence. For all k ∈ N, take B1, B2, ..., Bk ∈ B(R).
Then, for all 1 ≤ n1 < n2 < ... < nk ∈ N, one has:

P

(
k⋂

i=1

X−1
ni

(Bi)

)
= P

(
Ω1 × Ω2 × ...× Ωn1−1 × Y −1

n1
(B1)× Ωn1+1 × ...× Ωn2−1 × Y −1

n2
(B2)× ...

)
=

k∏
i=1

Pni(Y
−1
ni

(Bi))

=

k∏
i=1

µi(Bi)

=
k∏

i=1

P (Xni ∈ Bi) .

Theorem 39 (Kolmogorov’s Extension Theorem). For n ∈ N, let µ(n) be a probability measure on
(Rn,B(Rn)). For 1 ≤ m ≤ n, let

∏
m,n be the extension map from B(Rm) to B(Rn) for all B ∈ B(Rm):∏

n,m

(B) := {(x1, ..., xn) | (x1, ..., xm) ∈ B} (103)

= B × R× R× ...× R︸ ︷︷ ︸
n−m copies

(104)

If {µ(n) | n ∈ N} is consistent, i.e., for all n ∈ N, ∀1 ≤ m ≤ n,

µ(n) ◦
∏
m,n

= µ(m),

then there exists a probability space (Ω,F ,P) and {Xn | n ∈ N} on Ω such that:

L(X1,...,Xn) = µ(n)

for all n ∈ N.
Remark: remark that the previous theorem is a particular case of Kolmogorov’s Extension Theorem

with

µ(n) = µ1 × ...× µn for all n ∈ N.

In this case, the {Xn} are independent.
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Example 16. Let µ(n) be a centred Gaussian probability measure on (Rn,B(Rn)) with covariance matrix,

C(n) =


1 1 . . . 1
1 2 . . . 2
...

. . . 3
1 2 . . . n

 = i ∧ j for 1 ≤ i, j ≤ n.

i.e., µ(n) = N(0, C(n)). Verify that {µ(n) | n ∈ N} is consistent. By Kolmogorov’s Extension theorem,
there exists (Ω,F ,P) and {Xn | n ∈ N} on Ω such that L(X1,...,XN ) = µ(n) (this is the discrete Brownian
motion).

6 Conditioning and Martingales

6.1 Conditional Expectation

Recall conditional probability: Given A,B ∈ F with P (B) > 0, the conditional expectation was defined
as:

P (A|B) =
P (A ∩B)

P (B)
.

This is going to be the general reasoning, and now we will try to extend this idea.

Definition 35 (Conditional Expectation). Let (Ω,F ,P) be a probability space. Let X ∈ L1 and G ⊆ F
be a sub-sigma algebra. Then, a random variable Y on Ω is called a conditional expectation of X
given G, denoted by Y = E [X|G] if:

1. Y ∈ L1.
2. Y ∈ mG.
3. For every event A ∈ G, ∫

A
XdP =

∫
A
Y dP. (105)

This is not an expectation; it’s a random variable! The information, encoded by G, will change the
randomness. The new random variable, which is given by the conditional expectation, will re-predict the
randomness. It will be a new prediction on X based on the new information in G.

Remark. Some remarks:

1. It’s possible to define E [X|G] even if X /∈ L1. In fact, we only need
∫
AXdP to exist for all A ∈ G.

2. Condition (iii) can be replaced by condition (iii)’: for all A ∈ I,∫
A
XdP =

∫
A
Y dP, (106)

where I is a π-system and G = σ(I).

Proposition 30. Assume X1, X2 ∈ L1 and X1 ≤ X2 almost surely. Suppose G ⊆ F is a sub-sigma
algebra. Then, if Y1 = E [X1|G] and Y2 = E [X2|G], then Y1 ≤ Y2 almost surely.

Proof. Everything is integrable, so everything is almost everywhere finite. Hence, we can subtract with
no issues. Set A := {Y1 > Y2}. First, A ∈ G. Second,∫

A
Y1dP =

∫
A
X1dP ≤

∫
A
X2dP =

∫
A
Y2dP,
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where the inequality follows from standard monotonicity. Hence,∫
A
(Y1 − Y2)dP ≤ 0 ⇒ P (A) = 0

⇒ Y1 ≤ Y2 (almost surely)

Corrolary 4. Given X ∈ L1, G ⊆ F a sub sigma-algebra. If the conditional expectation of X given G
exists, then it must be unique almost surely, and it will be denoted by E [X|G].

Proof. 1. Existence: We’ll show two proofs: the first method is the standard proof which is seen in
textbooks, and the second method will look at the problem from a different angle (from a functional
analysis point of view). The second angle will be very nice to know, since it will help a lot with Q3 on
the homework.

1. Method #1: define two set functions µ±
g by:

∀ A ∈ G, µ±
g (A) :=

∫
A
X±dP.

It’s easy to verify that µ±
g are two measures on (Ω,G). Furthermore, these two measures are both

absolutely continuous with respect to P|G . Therefore, by the RN-theorem, there exists a Y ± ∈ mG
such that Y ± =

dµ±
g

dP . Hence, for all A ∈ G,∫
A
X±dP = µ±

g (A) =

∫
A
Y ±dP.

Obviously, Y ± ∈ L1 (by taking A = Ω in the above since X ∈ L1). Hence, Y ± = E [X±|G]. By the
linearity of integrals, we see that E [X|G] = Y + − Y −.

2. Method #2: look at the problem from a functional analysis point of view. First, assume that
X ∈ L2(Ω,F ,P). This is a Hilbert Space with an inner product given by the L2-norm. We consider:

L2(G) = {Z ∈ mG | E
[
Z2
]
< ∞}.

Obviously, L2(G) ⊆ L2(F) is a sub-Hilbert Space. Set,

Pg : L2(F) → L2(G)

to be the projection onto the subspace L2(G). (We are projecting elements from the bigger space
onto the smaller space). For all X ∈ L2(F), X − Pg(X) is perpendicular to L2(G). Hence, for all
W ∈ L2(F),

(X − Pg(X),W )L2 = 0.

Since for all A ∈ G, χA ∈ L2(G), one has:∫
Ω
(X − Pg(X))χAdP = 0 ⇒

∫
A
XdP =

∫
A
Pg(X)dP.

For the integrability conditions, since Pg(X) ∈ L2(G), Pg(X) ∈ mG. Therefore, when X ∈ L2,

E [X|G] = Pg(X).
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Now, for a general X ∈ L1(P), take X±
k = X± ∧ k for every k ∈ N. Then, X±

k ∈ L2 and X±
k ↑ X±.

Set:

Y ±
k := E

[
X±

k |G
]
= Pg(X

±
k ).

Last time we proved (cMON) (monotonicity for conditional expectation), so this let’s us set

Y ± := lim
k→∞

Y ±
k .

Finally, as an exercise, verify that for general X ∈ L1,

E [X|G] = Y + − Y −.

Some examples now.

Example 17. If G = σ({A}) = {∅,Ω, A,Ac}, with A ∈ F and P (A) ∈]0, 1[. Then, heuristically, we’d
expect that for every X ∈ L1,

E [X|G] = χA
E [X;A]

P (A)
+ χAc

E [X;Ac]

P (Ac)
,

where the E [X;A] corresponds to making a prediction, and the P (A) corresponds to normalizing.

Example 18. If G = σ(Y ) (the information of G is provided by another random variable) for some
Y ∈ mF . Let X be a random variable and let h be a Borel function such that h(X) ∈ L1. Write:

E [h(X)|G] = E [h(X)|Y ] .

First, since E [h(X)|Y ] ∈ mσ(Y ), there exists an H : R → R Borel such that

E [h(X)|Y ] = H(Y ).

Now assume that the pair (X,Y ) has the joint PDF function f(X,Y ) and let fY be the probability density
function of Y . Next, we define the following probability function:

fX|Y (x, y) :=

{
f(X,Y )(x,y)

fY (y) if fY (y) ̸= 0

0 if fY (y) = 0

This is called the conditional probability density. This does not always exist! If this exists, then if
H : R → R is given by,

H(y) :=

∫
R
h(x)fX|Y (x, y)dx

for all y ∈ R, then E [h(X)|Y ] = H(Y ).

Proof. 1. H is a Borel function, by the preparation for Fubini theorem section, so we have H(Y ) ∈
mΣ(Y ) ✓
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2. To see that H(Y ) ∈ L1(P), it’s sufficient to check that H · fy ∈ L1(dy). By Tonelli’s theorem,∫
R
|H(y)|dY (y)dy ≤

∫
R

(∫
R
|h(x)|fX|Y (x, y)dx

)
fY (y)dy

=

∫∫
R2

|h(x)| fX|Y (x, y)fY (y)︸ ︷︷ ︸
joint density

dxdy

=

∫∫
R2

|h(x)|f(X,Y )(x, y)dxdy

= E [|h(X)|]
< ∞ which gives us integrability.

3. For all A ∈ σ(Y ), there exists a B ∈ B(R) such that A = Y −1(B). Knowing this way of representing
A, we write:

E [h(X);A] = E [h(X)χB(Y )]

=

∫∫
R2

h(x)χB(y)f(X,Y )(x, y)dxdy

=

∫
B

(∫
R
h(x)fX|Y (x, y)dx

)
fY (y)dy

=

∫
B
H(y)fY (y)dy

= E [H(Y );A] .

where we can do the third step by Fubini’s theorem, which we can use since integrability has been
checked.

Hence, a conditional expectation has randomness, which entirely comes from Y .

6.1.1 Properties of Conditional Expectation E [X|G]

Assume X ∈ L1, and G ⊆ F is a sub-sigma algebra. Then,

1. if Y = E [X|G], then E [Y ] = E [X] i.e.:

E [E [X|G]] = E [X] .

2. if X ∈ mG, then E [X|G] = X (you can make the perfect prediction).
3. cLin (conditional linearity): if X,Y ∈ L1 and a, b ∈ R, then:

E [aX + bY |G] = aE [X|G] + bE [Y |G] .

4. cMON (conditional monotonicity): if X,Y ∈ L1 and X ≤ Y a.s., then:

E [X|G] ≤ E [Y |G] .

5. cJen (Conditional Jensen’s Inequality): Suppose that φ is a convex function such that φ(x) ∈
L1. Then,

E [φ(x)|G] ≥ φ(E [X|G]).
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The proof is basically the same as the standard Jensen’s inequality with the support line. For almost
every ω ∈ Ω fixed, take the supporting line at the point (E [X|G] (ω), φ(E [X|G] (ω)). For y = ax+b,
φ(x) ≥ ax+ b for all x ∈ R. So, by (cMON):

E [φ(x)|G] ≥ aE [X|G] + b.

So, pointwise, this means:

E [φ(x)|G] (ω) ≥ aE [X|G] (ω) + b = φ(E [X|G] (ω)).

6. (cMON) Conditional Monotonicity): assume {Xn | n ∈ N} ⊆ L1 and X ∈ L1. If Xn ↑ X, then
E [Xn|G] ↑ E [X|G].

Proof. Since E [Xn|G] is a monotonically increasing sequence, the limit Y := limn→∞ E [Xn | G]
exists. By Fatou’s Lemma,

E [|Y |] ≤ lim inf
n→∞

E [|E [Xn|G] |]

≤ lim inf
n→∞

E [|Xn|]

≤ E
[
X+
]
+ E

[
X−

1

]
< ∞ ⇒ Y ∈ L1.

The rest of the proof follows from the classical monotone convergence theorem. We need to check
that for all A ∈ G: ∫

A
XdP =︸︷︷︸

(MON)

lim
n→∞

∫
A
XndP

= lim
n→∞

∫
A
E [Xn | G] dP

=︸︷︷︸
(MON)

∫
A
Y dP.

7. (cMON’): if {Xn | n ∈ N} ⊆ L1 and X ∈ L1. If Xn ↓ X, then E [Xn | G] ↓ E [X|G].
8. (cFatou): if {Xn | n ∈ N} ⊆ L1 and assume that there exists a Y ∈ L1 such that Xn ≥ Y for all

n ∈ N. Then,

E
[
lim inf

n
Xn|G

]
≤ lim inf

n
E [Xn | G] . (107)

Proof. Recall in the classical setting how we proved Fatou’s Lemma: set Zm := infn≥mXn for all
m ∈ N. Then, Zm ↑ lim infnXn. Moreover, Y ≤ Zm ≤ Xn for all n ≥ m. So, Zm ∈ L1 for all
m ∈ N. Then apply (cMON) to the expected values to get that:

E [Zm | G] ↑ E
[
lim inf

n
Xn | G

]
.

Moreover, by (cMonotonicity):

E [Zm|G] ≤ inf
n≥m

E [Xn | G] .
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9. (cFatou’): if {Xn | n ∈ N} ⊆ L1, Y ∈ L1 such that Xn ≤ Y for all n ∈ N, then:

E
[
lim sup

n
Xn | G

]
≥ lim sup

n
E [Xn | G] . (108)

10. (cDOM): if {Xn | n ∈ N} ⊆ L1 and Y ∈ L1 such that |Xn| ≤ Y for all n ∈ N, and Xn → X a.s.
for some random variable X, then X ∈ L1 and:

E [Xn | G] → E [X|G]

a.s. as well as in L1.

Exercise: prove (cDOM) using (cFatou) and (cFatou’). We can see here that conditional
expectation behaves in a similar way to classical expectation.

11. (Tower Property): If H and G are two sub σ-algebras which are ordered, i.e., H ⊆ G, then for all
X ∈ L1,

E [E [X|H] |G] =︸︷︷︸
△1

E [X|H] =︸︷︷︸
△2

E [E [X|G] | H] . (109)

Proof. Your constraint is going to be your smaller σ-algebra: your smallest σ-algebra determines
everything.

(a) (△1): this is trivial because E [X|H] ∈ mH ⊆ mG.
(b) (△2): We only need to check this, so let’s check against the definition we want to study. For

all A ∈ H ⊆ G, we have:∫
A
E [X|G] dP =︸︷︷︸

(1)

∫
A
XdP =︸︷︷︸

(2)

∫
A
E [X|H] dP,

where in (1) we view A ∈ G and in (2) we view A ∈ H. Thus,

E [E [X|G] |H] = E [X|H] .

12. Suppose Z ∈ mG and XZ ∈ L1. Then, E [XZ|G] = Z · E [X|G].

Proof. We want to verify that for all A ∈ G,∫
A
X · ZdP =︸︷︷︸

(†)

∫
A
Z · E [X|G] dP.

(a) Go to the root of integrals: see how they behave on indicator functions. (†) holds for Z = χB

for all B ∈ G and X ≥ 0.
(b) Use (cLin) and (cMON) to extend the statement to a general case.

13. If H ⊆ F is another sub σ-algebra, and H is independent of σ(σ(X) ∪ G) (all the information
available by using either X or G or both), then,

E [X|σ(G ∪ H)] = E [X|σ(G)] .
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Proof. Consider a π-system:

I := {G ∩H | G ∈ G, H ∈ H}.

This is a generating π-system. It generates σ(H ∪ G). Let A ∈ I be of the form A = G ∩H. Then,∫
A
XdP =

∫
G
χXdP =︸︷︷︸

(indep)

P (H)

∫
G
XdP = P (H)

∫
G
E [X|G] dP =︸︷︷︸

(indep)

∫
A
E [X|G] dP.

Corr. if σ(X) is independent of H, then E [X|H] = E [X].

Proof. In (13) , take G = {∅,Ω}. Then, E [X|σ(G ∪H)] = E [X|H] and E [X|G] = E [X].

14. Assume X1, ..., XN are independent and Xj has distribution LXj for 1 ≤ j ≤ n. Let h : Rn → R be
Borel such that h(X1, ..., Xn) ∈ L1. Then,

E [h(X1, ..., Xn)|X1] = γ(X1),

where we get γ by integrating out the X2, ..., Xn:

γ(X) =

∫∫
...

∫∫
Rn−1

h(x1, ..., xn)(LX2 × LX3 × ...× LXn)(dx2 · · · dxn).

Exercise. Prove it using Fubini’s Theorem and Independence.

6.2 Martingales

Definition 36 (Filtration). Given a probability space (Ω,F ,P), if {Fn | n ≥ 0} is a sequence of sub
σ-algebras such that F0 ⊆ F1 ⊆ ... ⊆ Fn ⊆ Fn+1 ⊆ ... ⊆ F . Then, {Fn | n ≥ 1} is called a filtration.
The triple (Ω,F , {Fn},P) is called a filtered space.

Definition 37 (Adapted with respect to a filtration). Let {Xn | n ∈ N} be a sequence of random variables
on a filtered space (Ω,F , {Fn},P) . {Xn} is called adapted with respect to the filtration {Fn} if
Xn ∈ mFn for all n ∈ N.

Definition 38 (Martingale). Given a filtered space (Ω,F , {Fn},P) and a process {Xn | n ∈ N}, the
process is called a martingale with respect to the filtration {Fn | n ≥ 0} if:

1. {Xn} adapted with respect to {Fn | n ≥ 0}.
2. Xn ∈ L1 for all n ≥ 0.
3. E [Xn+1 | Fn] = Xn for all n ≥ 0.

• Submartingale: (1) and (2) are the same. For (3):

E [Xn+1|Fn] ≥ Xn ∀n ≥ 0. (110)

• Supermartingale: (1) and (2) are the same. For (3):

E [Xn+1|Fn] ≤ Xn ∀n ≥ 0. (111)

Remark that if {Xn | n ≥ 0} is a martingale with respect to the filtration {Fn | n ≥ 0}, then for all
m ≥ n,

E [Xm|Fn] = Xn. (112)

How does one prove this? You run a tower property argument and apply the definition of a martingale:

E [Xm|Fn] = E [E [Xm|Fm−1] |Fn] = E [Xm−1|Fn] = ... = Xn.
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Example 19. Let {Yn | n ∈ N} be a sequence of indepndent random variables on a probability space
such that E [Yn] = 0 for all n ∈ N. Set S0 ≡ 0, and set Sn :=

∑n
j=1 Yj . Set F0 = {∅,Ω} and Fn =

σ({Y1, ..., Yn}). Then, {Sn | n ≥ 0} is a martingale with respect to {Fn | n ≥ 0}.

Proof. We can see this by using (clin) to break the sum up:

E [Sn+1|Fn] = E [Sn + Yn+1 | Fn]

= E [Sn|Fn]︸ ︷︷ ︸
measurable

+E [Yn+1|Fn]︸ ︷︷ ︸
indep

= Sn + E [Yn+1]

= Sn✓.

In addition, if E
[
X2

n

]
= 1 for all n ≥ 1, then we get a second martingale: {S2

n − n| n ≥ 0} is a
martingale with respect to {Fn | n ≥ 0}. There will be no issues with (1) and (2), those are pretty
straightforward to see. For (3), we just need to do some work:

E
[
S2
n+1 − (n+ 1)|Fn

]
= E

[
(Sn + Yn+1)

2|Fn

]
− (n+ 1)

= E
[
S2
n | Fn

]
+ 2E [Sn · Yn | Fn] + E

[
Y 2
n+1 | Fn+1

]
− (n+ 1)

= S2
n + 2Sn+1E [Yn+1] + E

[
Y 2
n+1

]
− (n+ 1)

= S2
n − n.

In addition, if Yn ∼ N(0, 1) random variable for all n ≥ 1, then:{
etSn− t2

2
n | n ≥ 0

}
,

is a martingale with respect to the same filtration {Fn}.

Exercise: verify it yourself.

Example 20. If X ∈ L1 and {Fn | n ≥ 0} is a filtration and Xn := E [X|Fn] for all n ≥ 0. Then,
this sequence of conditional expectations {Xn} is a martingale with respect to Fn. This follows from the
Tower Property:

E [Xn+1|Fn] = E [E [X|Fn+1] |Fn] = E [X|Fn] = Xn✓.

We remark that if {Xn} is a sub-martingale ⇐⇒ {−Xn | n ≥ 0} is a super-martingale.

Theorem 40. Given a filtered space (Ω,F , {Fn},P) consider a process {Xn} adapted with respect to
{Fn}. Let f : R → R be a convex function such that f(Xn) ∈ L1 for all n ≥ 0. If either {Xn | n ≥ 0}
is a martingale or {Xn | n ≥ 0} is a sub-martingale and f is increasing, then {f(Xn) | n ∈ N} is a
sub-martingale.

Proof. {f(xn) | n ∈ N} is an adapted process. Then, for all n ≥ 0, by (cJensen) :

E [f(xn+1)|Fn] ≥ f(E [Xn+1 | Fn]) =

{
= f(xn) if martingale

≥ f(xn) if sub-martingale

In either case, this shows that {f(xn) | n ≥ 0} is a sub-martingale.
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Corrolary 5. From this theorem, we get...

• If {Xn} is a martingale, then {|Xn|p} is a sub-martingale for all p ≥ 1.
• If {Xn} is a sub-martingale, then {|Xn|p} (p ≥ 1) is a sub-martingale if Xn ≥ 0 for all n ≥ 0.
• If {Xn | n ≥ 0} is a sub-martingale, then {X+

n | n ≥ 0} is a sub-martingale.

The next theorem tells us how to extract the part of the game which makes it unfair to get a fair
game.

Theorem 41 (Doob’s Decomposition Theorem). Given (Ω,F , {Fn},P) and a sub-martingale {Xn | n ≥
0}, there exists a process {Yn} such that:

1. Y0 ≡ 0, Yn ∈ L1, and Yn+1 ∈ mFn for all n ≥ 0.

(a) We call this property {Yn} being pre-visible with respect to the filtration {Fn}.
2. Yn+1 ≥ Yn for all n ≥ 0.
3. {Mn := Xn − Yn | n ≥ 0} is a martingale with respect to {Fn}.

Furthermore, such a process is almost surely unique.

Proof. First, we prove the uniqueness of {Yn | n ≥ 0}. Assume that there exists another process {Wn}
satisfying (i)-(iii). Set:

∆n := Yn −Wn ∀n ∈ N
∆0 ≡ 0 since they both start at zero

∆n+1 ∈ mFn ∀n ≥ 0.

Then, ∆n = (Xn −Wn)− (Xn − Yn). So, {∆n | n ≥ 0} is a martingale with respect to {Fn}. Thus,

∆n+1 = E [∆n+1 | Fn] = ∆n,

for all n ≥ 0. This shows that ∆n = 0 a.s. for all n ≥ 0.

Now sum up the increment at every step. Set Y0 ≡ 0. Then,

Yn :=
n−1∑
j=0

(E [Xj+1|Fj ]−Xj) for all n ≥ 1.

We have that Yn ≥ 0, Yn+1 ≥ Yn, and Yn+1 ∈ mFn for all n ≥ 0. Now let’s see what happens when I
remove Yn from Xn:

E [Mn+1|Fn] = E [Xn+1 − Yn+1|Fn]

= E [Xn+1|Fn]− Yn+1

= E [Xn+1|Fn]− (E [Xn+1|Fn]−Xn)− Yn

= Xn − Yn

= Mn ∀n ∈ N.

Hence, to conclude: given any sub-martingale, I can isolate the growing part from the martingale part.
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6.3 Stopping Times

Definition 39 (Stopping Time). Given (Ω,F , {Fn},P) , a random variable τ : Ω → {0, 1, 2, 3, ...} 0 ≤
τ ≤ ∞ is a stopping time if for all 0 ≤ n ≤ ∞, {τ ≤ n} ∈ Fn. Note that F∞ = σ

(⋃
n≥0Fn

)
.

The motivation or heuristic meaning of this is that τ is the “stopping strategy”: τ tells me the mo-
ment that I quit the game. The measurability condition in the definition tells me that I shouldn’t need to
look into the future to decide when I’m quitting the game: all that information should be contained in Fn.

Remark. τ is a stopping time ⇐⇒ for all 0 ≤ n ≤ ∞, {τ = n} ∈ Fn. We can very quickly give
a justification to this:

Proof. “⇒”: for all n ≥ 0, we can write:

{τ = n} = {τ ≤ n} \ {τ ≤ n− 1}

which is in Fn since F is a sigma algebra. For the infinite case:

{τ = ∞} =
⋂
n≥0

{τ ≥ n} ∈ F∞.

“⇐”: for all 0 ≤ n ≤ ∞:

{τ ≤ n} =
n⋃

j=0

{τ = j} ∈ Fn.

Example 21. Suppose {Xn | n ≥ 0} is adapted with respect to {Fn | n ≥ 0}. Let a, b ∈ R be such that
a < b. Set:

• τ0 ≡ 0.
• τ1 := inf{n ≥ 0 | Xn ≤ a}.
• τ2 := inf{n ≥ τ1 | Xn ≥ b}.

τ1 is a stopping time, because if n ≥ 0, then:

{τ1 = n} = {X0 > a,X1 > a, ...,Xn−1 > a,Xn ≤ a} ∈ Fn.

In the infinite case,

{τ1 = ∞} = {Xn > a ∀n ≥ 0} ∈ F∞.

τ2 is also a stopping time; τ1 and τ2 is also a stopping time. For example, if n ≥ 0:

{τ2 = n} =
n⋃

j=0

{τ1 = j,Xj+1 < b,Xj+2 < b, ...,Xn−1 < b,Xn ≥ b} ∈ Fn.

From τ1 to τ2, {Xn | n ≥ 0} completes the first upcrossing from a to b. Similarly, we can define:



Math 587: Advanced Probability Fall 2021 Page 73

• “Start” of the kth upcrossing: τ2k−1 := inf{n ≥ τ2k−2 | Xn ≤ a}.
• “End” of the kth upcrossing: τ2k := inf{n ≥ τ2k−1 | Xn ≥ b}.

This gives us that {τk | k ≥ 0} is a family of ordered stopping times.

Proposition 31. (Properties of Stopping Time)

1. τ is a stopping time. For all 0 ≤ n ≤ ∞, the following are all stopping times: {τ = n}, {τ ≥ n},
{τ ≤ n}, {τ > n}, and {τ < n} ∈ Fn.

2. τ is a stopping time: for all N > 0 constant, τ ∧N := min{τ,N} is a stopping time.
3. If τ1 and τ2 are two stopping times, then the following are all stopping times:

(a) τ1 ∨ τ2 = max{τ1, τ2}
(b) τ1 + τ2

Exercise: prove (2) and (3), by breaking up into the integer case and the infinite case.

Definition 40 (Sigma Algebra Generated By Stopping Time). Given a (Ω,F , {Fn},P) and a stopping
time τ : set:

Fτ := {A ∈ F | A ∩ {τ ≤ n} ∈ Fn ∀0 ≤ n ≤ ∞}, (113)

or equivalently,

Fτ := {A ∈ F | A ∩ {τ = n} ∈ Fn ∀0 ≤ n ≤ ∞}.

Exercise: verify that Fτ is a σ-algebra. We remark that σ(τ) ⊂ Fτ , but in general this inclusion is
strict. We can verify this inclusion as follows:

Proof. For all 0 ≤ m ≤ ∞ {τ = m} ∈ Fτ . For all 0 ≤ n ≤ ∞:

{τ = m} ∩ {τ = n} =

{
{τ = n} ∈ Fn if n = m.

∅ otherwise

Definition 41. Let {Xn | n ≥ 0} be an adapted process with respect to {Fn} and let τ be a stopping
time. We define for every sample point ω ∈ Ω:

Xτ (ω) :=


Xn(ω) if τ = n for n ≥ 0.

limn→∞Xn(ω) if τ = ∞ and limn→∞Xn(ω) exists.

undefined if τ = ∞ and limit DNE.

(114)

Proposition 32. Given (Ω,F , {Fn},P) , let Xn be adapted. Then,

Xτ · χ{Xτ is defined} ∈ mFτ .

(We basically want to rule out the last case in this construction).

Proof. Write it out in terms of the possible categories in the set:

Xτ · χ{Xτ is defined} =
∑
n≥0

Xn · χτ=n + lim
n→∞

Xn · χ{τ=∞} · χ{limn→∞ Xn exists.}

Verify that, for all B ∈ B(R): {
Xτχ{Xτ is defined} ∈ B

}
∈ Fτ .

Exercise: finish this proof.
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Proposition 33. If τ1 and τ2 are two stopping times on (Ω,F , {Fn},P) then:

1. If τ1 ≤ τ2, then:

Fτ1 ⊆ Fτ2 . (115)

2. τ1 ∨ τ2 := min{τ1, τ2}.

Fτ1∧τ2 = Fτ1 ∩ Fτ2 . (116)

Proof. 1. ∀A ∈ Fτ1 for all 0 ≤ n ≤ ∞:

A ∩ {τ2 ≤ n} = A ∩ {τ1 ≤ n}︸ ︷︷ ︸
∈Fn

∩{τ2 ≤ n}︸ ︷︷ ︸
∈Fn

Hence, A ∈ Fτ2 .
2. τ1 ∧ τ2 ≤ τ1 and τ1 ∧ τ2 ≤ τ2. This shows that:

Fτ1∧τ2 ⊆ Fτ1 ∩ Fτ2

Now we need to show the other inclusion:

∀ A ∈ Fτ1 ∩ Fτ2 ∀ 0 ≤ n ≤ ∞ A ∩ {τ1 ∧ τ2 ≤ n} = A ∩ ({τ1 ≤ n} ∪ {τ2 ≤ n})
= (A ∩ {τ1 ≤ n})︸ ︷︷ ︸

∈Fn

∪ (A ∩ {τ2 ≤ n})︸ ︷︷ ︸
∈Fn

∈ Fn.

Hence, A ∈ Fτ1∧τ2 .

Proposition 34. Given a filtered space (Ω,F , {Fn},P) and an adapted process {Xn | n ≥ 0}, let τ be
a stopping time. Then, {Xn∧τ | n ≥ 0} is again adapted. Furthermore, if Xn ∈ L1 for all n ≥ 0, then
Xn∧τ ∈ L1 for all n ≥ 0. This is called a stopped process.

Proof. For all n ≥ 0,

Xn∧τ = χ{τ≥n+1} ·Xn +
n∑

j=0

χ{τ=j} ·Xj ∈ mFn.

It’s also clear that if Xn ∈ L1 for all n ≥ 0, then Xn∧τ ∈ L1 since it’s a finite sum consisting of Xj ’s times
an indicator function.

The next theorem tells us that this stopping process does not change if a game is favourable or not.

Theorem 42 (Doob’s Stopping Time Theorem). Consider a filtered space (Ω,F , {Fn},P) and a stopping
time τ . If {Xn | n ∈ N} is a (sub)-martingale with respect to {Fn}, then {Xn∧τ} ∈ L1 is again a
(sub)-martingale.

Proof. We already know that {Xn∧τ | n ≥ 0} is adapted and Xn∧τ ∈ L1 for all n ≥ 0. We need to check
the (sub)-martingale property now: for all n ≥ 0, ∀A ∈ Fn:∫

A
X(n+1)∧τdP =

∫
A∩{τ>n}

Xn+1dP+

∫
A∩{τ≤n}

XτdP

= (≥)

∫
A∩{τ>n}

XndP+

∫
A∩{τ≤n}

XτdP

=

∫
A
Xn∧τdP.

Since A ∩ {τ > n} ∈ Fn, E [Xn+1 | Fn] (≥) = Xn, this shows that E
[
X(n+1)∧τ |Fn

]
(≥) = Xn∧τ .
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Corrolary 6. If {Xn | n ≥ 0} is a (sub)-martingale and τ is a stopping time, then:

E [Xn∧τ ] (≥) = E [X0] ∀n ≥ 0.

Caution! This does NOT imply that E [Xτ ] = E [X0]!! We can see this illustrated with an example:

Example 22. Let {Yn} be a sequence of iid random variables on (Ω,F ,P) such that:

P (Y1 = 1) =
1

2
= P (Y1 = −1) .

Set S0 ≡ 0, Sn =
∑n

j=1 Yj for all n ≥ 1. Let F0 = {∅,Ω}. Then,

Fn := σ({Y1, ..., Yn})

for all n ≥ 1. {Sn | n ≥ 0} is a martingale with respect to {Fn}. Set τ := inf{n ≥ 0 | Sn = 1}. One
can easily check that τ is a stopping time. {Sn∧τ | n ≥ 0} is a martingale. This shows that for all n ≥ 0,
E [Sn∧τ ] = E [S0] = 0. However, Sτ = 1. So,

E [Sτ ] = 1 ̸= E [S0] .

Theorem 43 (Hunt’s Theorem (I)). Given (Ω,F , {Fn},P) let {Xn} be a (sub)-martingale and τ1 and τ2
be two stopping times with τ1 ≤ τ2 ≤ T for some constant T > 0 (i.e., τ1 ≤ τ2 and τ1 and τ2 are bounded
by T ). Then, Xτi ∈ L1 for i = 1, 2 and E [Xτ2 |Fτ1 ] (≥) = Xτ1. In particular, E [Xτ2 ] (≥) = E [Xτ1 ].

Corrolary 7. If τ is a bounded stopping time, and {Xn | n ≥ 0} is a (sub)-martingale, then

E [Xτ ] (≥) = E [X0] . (117)

Proof. 1. Integrability: For i = 1, 2:

Xτi =
T∑

j=0

χ{τi=j} ·Xj ∈ L1,

since a finite sum of of random variables will be finite since T is finite.

Next, let’s assume first that {Xn | n ≥ 0} is a martingale. Then, for all A ∈ Fτ1 :∫
A
Xτ2dP =

T∑
j=0

∫
A∩{τ2=j}

XjdP.

Note that for all 0 ≤ j ≤ T , A ∩ {τ1 = k} ∩ {τ2 = j} ∈ Fj . So,

=
T∑

j=0

j∑
k=0

∫
A∩{τ2=k}∩{τ2=j}

XjdP

=
T∑

j=0

j∑
k=0

∫
A∩{τ1=k}∩{τ2=j}

XTdP

=

∫
A
XTdP(T is a constant.)

Re-run the same argument for τ2: similarly:∫
A
Xτ1dP =

T∑
k=0

∫
A∩{τ1=k}

XkdP.
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Thus,
∫
AXτ2dP =

∫
AXτ1dP for all A ∈ Fτ1 . Recall that Xτ1 ∈ mFτ1 . Therefore,

E [Xτ2 |Fτ1 ] = Xτ1 .

Now, let’s assume that {Xn | n ≥ 0} is a sub-martingale. Assume Doob’s Decomposition ofXn = Mn+Yn,
where {Yn | n ≥ 0} is a non-negative, increasing, and pre-visible process and {Mn} is a martingale, and
the decomposition is unique. Then,

E [Xτ2 |Fτ1 ] = E [Mτ2 | Fτ1 ] + E [Yτ2 | Fτ1 ]

≥ Mτ1 + Yτ1

= Xτ1 ,

where we got Mτ1 from the previous step and we got Yτ1 because Yτ2 ≥ Yτ1 and Yτ1 ∈ mFτ1 .

Recall upcrossings:

Given (Ω,F , {Fn},P) let {Xn} be adapted. Consider real numbers a, b ∈ R, a < b, τ0 ≡ 0. Then,
{τk | k ≥ 0} is the upcrossing time from a to b.

Theorem 44 (Doob’s Upcrossing Inequality). Given (Ω,F , {Fn},P) let {Xn | n ∈ N} be a sub-martingale.
For every a, b ∈ R, a < b, let {τk} be the upcrossing time from a to be, and for every n ≥ 1, set:

U
(n)
a,b := # upcrossings from a to be completed by time n. (118)

In other words, this is max{k | τ2k ≥ n}. Then,

E
[
U

(n)
a,b

]
≤ E [(Xn − a)+]

b− a
, (119)

for all n ≥ 1. In particular, if supn E [X+
n ] < ∞, then Ua,b := limn→∞ U

(n)
a,b < ∞ a.s.

This theorem tells us that the oscillations are bounded by a terminal index n. It’s reminiscent of

the Kolmogorov 0-1 Law. Also note that U
(n)
a,b ↑ Ua,b = limn→∞ U

(n)
a,b exists and is the total number of

upcrossings from a to b.

Proof. Set Yn := (Xn − a)+ for all n ≥ 0. Note that {Yn | n ≥ 0} is again a sub-martingale, because
φ(x) = (x − a)+ is increasing and convex. In addition, Yτ2k−1

= 0 and Yτ2k ≥ b − a > 0 is true for all
k ≥ 1. This implies that

1 ≤
Yτ2k − Yτ2k−1

b− a
.
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WLOG, assume that τ1 < n. Otherwise, if τ1 > n, the first upcrossing hasn’t begun yet, i.e., U
(n)
a,b = 0.

Then,

U
(n)
a,b =

U
(n)
a,b∑

k=1

1

≤
U

(n)
a,b∑

k=1

Yτ2k − Yτ2k−1

b− a

=
n∑

k=1

Yτ2k∧n
− Yτ(2k−1)∧n

b− a

=
1

b− a
(Yτ2n∧n︸ ︷︷ ︸

=Yn

−
n∑

k=2

(Yτ2k−1∧n
− Yτ2k−2∧n)− Yτ1∧n︸ ︷︷ ︸

=Yτ1=0

).

Taking the expectation of both sides yields:

E
[
U

(n)
a,b

]
≤ 1

b− a
E [Yn]︸ ︷︷ ︸

E[(Xn−a)+]
b−a

− 1

b− a

n∑
k=2

(E
[
Yτ2k−1∧n

]
− E

[
Yτ2k−2∧n

]
)︸ ︷︷ ︸

n≥τ2k−1∧n≥τ2k−2∧n(2)

so (2) implies E
[
Yτ2k−1∧n

]
≥ E

[
Yτ2k−2∧n

]
by (Hunt’s Theorem) . Hence,

E
[
U

(n)
a,b

]
≤ E [(Xn − a)+]

b− a
.

Finally, by (MON) ,

E [Ua,b] = lim
n→∞

E
[
U

(n)
a,b

]
≤ sup

n

E [(Xn − a)+]

b− a
< ∞,

since supn E [(Xn − a)+] ≤ supn E [X+
n ] + |a|. Hence, Ua,b < ∞ a.s.

6.4 Martingale Convergence Theorems

Theorem 45 (Martingale Convergence Theorem 1). Given (Ω,F , {Fn},P) let {Xn | n ≥ 0} be a sub-
martingale with supn E [X+

n ] < ∞. Then, there exists an X ∈ L1 such that Xn → X almost surely.

Note that the condition on the expectation, supn E [X+
n ] < ∞ is quivalent to saying thatXn is bounded

in L1 in the case of being a sub-martingale.

Proof. By (Doob’s Upcrossing Inequality) we can write:

P

 ⋃
a,b∈Q, a<b

{Ua,b = ∞}

 = 0.

Hence,

P

 ⋂
a,b∈Q, a<b

{Ua,b < ∞}

 = 1 ⇒ lim
n→∞

Xn =: X.
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Hence, we’ve found that the limit exists almost surely. It CAN be infinity, however. Next, by (Fatou) ,

E [|X|] ≤ lim inf
n

E [|Xn|]

= lim inf
n

(2E
[
X+

1

]
− E [Xn])

≤ 2 sup
n

E
[
X+

n

]
.

Now use that Xn is a sub-martingale:

≤ 2 sup
n

E
[
X+

n

]
− E [X0]

< ∞.

We remark that (Martingale CV Thm 1) does NOT imply that Xn → X in L61. Consider the
following example to see why.

Example 23. {Yn | n ∈ N} be iid random variables with Yn > 0 for all n ≥ 1 and E [Y1] = 1 and
ln(Yn) ∈ L1. Set T0 ≡ 1 and:

Tj :=

n∏
j=1

Yj ∀n ≥ 1.

Set F0 = {∅,Ω}, and Fn = σ({Y1, ..., Yn}). Then, {Tn | n ≥ 0} is a martingale with respect to {Fn}.
Quick check of this:

E [Tn+1|Fn] = E [Tn · Yn+1|Fn] = TnE [Yn+1] = Tn.

Hence, for all n ≥ 0, E [Tn] = 1. So, there exists a T ∈ L1 such that Tn → T almost surely. What is T?
Well, consider a new sequence {ln(Yn) | n ≥ 1} iid random variables with ln(Yn) ∈ L1 for all n ≥ 1. By
(SLLN 3) we have:

1

n

n∑
j=1

ln(Yj) → E [ln(Y1)] almost surely.

Assume that Y1 is not almost everywhere constant. Then, by (Jensen) we have:

E [ln(Y1)] < ln(E [Y1]) < 0.

The inequality is strict, since Y1 is not constant. Hence,

lim
n→∞

1

n

n∑
j=1

lim(Yj) = c < 0 a.s.

⇒ lim
n→∞

1

n
ln(Tn) = c a.s.

This shows that Tn ∼ ecn when n is sufficiently large. Hence, T = limn→∞ Tn = 0 almost surely which
shows that Tn does NOT converge to T in L1.

Theorem 46 (Martingale Convergence Theorem II). Given a filtered space (Ω,F , {Fn},P) let {Xn | n ≥
0} be a (sub)-martingale and let {Xn | n ≥ 0} be uniformly integrable. Then, there exists an X ∈ L1 such
that Xn → X almost surely and in L1. IN addition, E [X|Fn] (≥) = Xn for all n ≥ 0.
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Proof. By (Martingale CV Thm I) , there exists an X ∈ L1 such that Xn → X almost surely.

⇒ {Xn |n ≥ 0} is uniformly integrable

⇒ Xn → X in L1.

Now to show the second statement:

∀ n ≥ 0, ∀ A ∈ Fn

∫
A
XndP(≤) =

∫
A
XmdP ∀ m ≥ n →︸︷︷︸

m→∞

∫
A
XdP.

This shows that

Xn(≤) = E [X|Fn] .

Lemma 11 (Doob’s Maximal Inequality). Let {Xn | n ≥ 0} be a sub-martingale on a filtered space.
Then, for all N > 0, for all ε > 0,

P
(

max
0≤n≤N

Xn > ε

)
≤ 1

ε
E
[
Xn; max

0≤n≤N
Xn > ε

]
. (120)

In particular, if Xn ≥ 0 for all n ≥ 0 and supn ||Xn||p < ∞ for some p > 1, then we can conclude that:

|| max
0≤n≤N

Xn||p ≤
p

p− 1
||XN ||p. (121)

And, furthermore,

|| sup
n

Xn|| ≤
p

p− 1
sup
n

||Xn||. (122)

This is a very intrinsic property about martingales; we’re trying to control something that involves
the whole process.

Proof. We will only show the first inequality. Set Mn := max0≤n≤N Xn and τ = inf{n ≥ 0 | Xn > ε}. τ
is a stopping time. We have the following:

{Mn > ε} = {τ ≤ N} (123)

Since τ reports the time when the process goes above ε.

P (τ ≤ N) =

N∑
j=0

P (τ = j)

≤
N∑
j=0

1

ε

∫
{τ=j}

XjdP

≤
N∑
j=0

1

ε

∫
{τ=j}

XNdP

=
1

ε
E [Xn; τ ≤ N ]
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Theorem 47 (Martingale Convergence Theorem III). Given a filtered space (Ω,F , {Fn},P) let {Xn|n ≥
0} be a martingale (or a non-negative sub-martingale) with supn ||Xn||p < ∞ for some p > 1. Then, there
exists an X ∈ Lp such that Xn → X almost surely and in Lp and

E [X|Fn] (≥) = Xn ∀n ≥ 0. (124)

Proof. {Xn} is bounded in Lp. Hence,

⇒ {Xn | n ≥ 0} is uniformly integrable

⇒ ∃ X ∈ L1 s.t. Xn → X a.s. and in L1 and E [X|Fn] (≥) = Xn.

By (Fatou) ,

E [|X|p] ≤ lim inf
n

E [|Xn|p]

≤ sup
n

E [|Xn|p]

< ∞ ⇒ X ∈ Lp.

Now, we need to use one of the integral convergence theorems. {|Xn| | n ≥ 0} is a sub-martingale.
Applying (Doob’s Maximal Inequality) on {|Xn|} we get that supn |Xn| ∈ Lp and thus by (DOM)
Xn → X in Lp.

Theorem 48 (Hunt’s Theorem II). Given a filtered space (Ω,F , {Fn},P) and a uniformly integrable
(sub)-martingale {Xn}, let τ1, τ2 be two stopping times with τ1 ≤ τ2. Then, for i = 1, 2, Xτi ∈ L1 and

E [Xτ2 |Fτ1 ] (≥) = Xτ1 . (125)

Proof. If {Xn | n ≥ 0} is uniformly integrable, then there exists an X∞ ∈ L1 such that Xn → X almost
surely and in L1. Hence, Xτi is well-defined almost surely for i = 1, 2.

1. Let {Xn = Mn + Yn} by (Doob’s Decomposition) of {Xn}. We have 0 ≤ Yn and Yn ↑ to
Y := limn Yn. We have:

E [Y ] ≤ lim inf
n

E [Yn]

= lim inf
n

(E [Xn]− E [Mn])

≤ sup
n

E [|Xn|]− E [Mn]

Hence, Y ∈ L1 and Yn → Y almost surely and in L1 (by (DOM) ); the dominating function is Y .
Hence, {Yn | n ≥ 0} is uniformly integrable. Set M∞ := X∞ − Y∞ which shows that Mn → M
almost surely and in L1 and {Mn | n ≥ 0} is uniformly integrable.

2. In this step we claim that if τ is a stopping time, then {Xn∧τ | n ≥ 0} is uniformly integrable.
Exercise: prove this statement.

3. We know that for i = 1, 2, {Xn∧τi | i = 1, 2} is a uniformly integrable sub-martingale. Hence,

Xn∧τi → Xτi
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almost surely and in L1 by uniform integrability. Hence, for all A ∈ Fτ1 :∫
A
X2dP = lim

n→∞

∫
A
Xτ2∧ndP (by L1 convergence)

= lim
n→∞

(∫
A∩{τ1≤n}

Xτ2∧ndP+

∫
A∩{τ1>n}

XndP

)

= (≥) lim
n→∞

(∫
A∩{τ1≤n}

Xτ1∧ndP+

∫
A∩{τ1>n}

XndP

)

= lim
n→∞

∫
A
Xτ1∧ndP

=

∫
A
Xτ1dP (by L1 convergence).

Hence,

E [Xτ2∧n|Fτ1∧n] (≥) = Xτ1∧n.

Theorem 49 (Hunt’s Theorem III). Let {Xn | n ≥ 0} be a (sub)-martingale, τ1, τ2 be stopping times
such that E [τ1] ≤ E [τ2] < ∞. Assume that there exists an k > 0 such that |Xn+1−Xn| ≤ k for all n ≥ 0.
Then, for i = 1, 2, Xτi ∈ L1 and E [Xτ2 |Fτ1 ] (≥) = Xτ1.

Corrolary 8 (Wald’s Inequality). Let {Wn | n ≥ 1} be iid random variables with E [W1] ∈ R. Set
X0 ≡ 0, Xn :=

∑n
j=1Wj for all n ≥ 1. Set F0 = {∅,Ω} and Fn := σ({W1, ...,Wn}). Let τ be a stopping

time with E [τ ] < ∞. Then,

E [Xτ ] = E [τ ]E [W1] .


