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1 Central Limit Theorem, Characteristic Functions, and Convergence
of Probability Measures

1.1 Review of Sums of Independent Random Variables

Consider {Xn | n ∈ N} iid random variables with E [X1] = 0 (WLOG) and E
[
X2

1

]
= 1. Set Sn :=∑n

j=1XJ . From the SSLN,

Sn
n

→ 0

almost surely. In other words, |Sn| has sub-linear growth as n → ∞. In fact, given any sequence
{bn | n ≥ 1} ⊆]0,∞[ such that bn ↑ ∞, if

∞∑
n=1

1

b2n
<∞,

i.e., bn grows sufficiently fast, then Sn
bn

→ 0 almost surely (by Kronecker’s Lemma, c.f. MATH 587). Why?

∞∑
n=1

E
[
X2

n

]
b2n

<∞ ⇒
∞∑
n=1

Xn

bn
converges almost surely ⇒ Sn

bn
→ 0 almost surely.

Such a sequence {bn} includes:

• {np} for p > 1
2 .

• {
√
n(ln(n))p} for any p > 1

2 .
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This means that I can do better than what I know about the LLN. For example, we know that |Sn| grows
slower than

√
n(ln(p))1/2 for any p > 1

2 . Since the inequality is strict, this means you can always do
better. There is not a critical level. Now suppose we are interested in the asymptotic behaviour? Can we
find a lower bound for the growth rate of Sn?

On the other hand, if {Xn | n ≥ 1} is iid N(0, 1) standard Gaussian random variables. Then, set:

S̆n :=
Sn√
n
. (1)

S̆n is again N(0, 1) for all n ≥ 1. At least, in this case, S̆n doesn’t converge to any constant almost surely.
In fact, it’s easy to see that lim supn

Sn√
n
= +∞ and lim infn

Sn√
n
= −∞ almost surely. Why is this? Let’s

consider the limsup. For all R > 0,

P
(
S̆n > R

)
=

1√
2π

∫ +∞

R
e−

x2

2 dx

= pR

> 0.

Since lim supn S̆n ∈ mT (tail σ-algebra, we have from the Kolmogorov 0-1 Law that lim supn S̆n is constant
almost surely. What is this constant? Write:

S̆n =
Sn√
n
=

∑n
j=1Xj +

∑n
j=N+1Xj√

n
.

As n→ ∞,
∑n

j=1 Xj√
n

goes to infinity. Hence, lim supn S̆n = ∞ almost surely. One can do a similar analysis

for the liminf.

Remark that S̆n ∼ N(0, 1) is also seen for a more general sequence of random variables. This phe-
nomenon is called the Central Limit Phenomenon.

Q: Can I have a better description of the asymptotics of Sn?

The answer is the Law of the Iterated Logarithm.

Theorem 1 (Law of Iterated Logarithm). Let {Xn} be a sequence of iid RVs with E [X1] = 0 and
E
[
X2

1

]
= 1. For every n ≥ 1, set Sn =

∑n
j=1Xj, and define Λn to be the iterated logarithm:

Λn :=
√

2n ln(ln(n ∨ 3)).

It turns out that Λn will give us the accurate oscillation rate of Sn. Recall that the notation n ∨ 3 =
max{n, 3}. Then, we can conclude:

• lim supn
Sn
Λn

= 1 almost surely.

• lim infn
Sn
Λn

= −1 almost surely.

In fact, for every c ∈ [−1, 1], for almost every sample point ω ∈ Ω, there exists a subsequence {nk}ω ⊆ N
such that

lim
k→∞

Snk
(ω)

Λnk

= c. (2)

The picture you want to have in mind is the following:
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Figure 1: The oscillations of Sn will always be in the envelope given by ±Λn.

In particular, note that LIL ⇒ SLLN. The LIL is a refinement of the SLLN; Λn is sub-linear. An-
other perspective is by looking at it from the Kolmogorov 0-1 Law perspective: the liminf and limsup are
constant almost surely.

Task # 1: Prove the Law of Iterated Logarithm.

Q: What can we say about the distribution?

The Central Limit Theorem will answer this question. For now, we will provide a heuristic overview;
in the coming sections, we will rigorously do everything.

Idea: in the study of LLN, we consider S̄n := Sn
n , where E

[
S̄n
]
= E [S1] = 0 for all n ∈ N. Here,

this means that S̄n preserves the first moment. In (CLT) we will consider S̆n := Sn√
n
, where E

[
S̆n

]
= 0

(so, S̆n = Sn−E[Sn]√
n

, where E
[
S̆n

]
= 0. Moreover,

E
[
(S̆n)

2
]
=
nE
[
X2

1

]
n

= 1.

Note that in the CLT, the first and second moments are preserved.

1. The expected value tells us where the mass is centred.
2. The variance measures how the mass is spread out: how random the random variable is.

Heuristically, the CLT studies how the randomness will replace itself under the assumption / condition
that the amount of randomness is preserved or fixed. For sure, it will not be going to a constant, and it
will resemble a N(0, 1) as n→ ∞.

We work in the following set-up: {Xn} iid random variables with E [X1] = 0, E
[
X2

1

]
= 1, and Sn =∑n

j=1Xj .

Remark: by preserving / stabilizing the second moments, S̆n stabilizes all the moments. We can see this
with the following computation / proof.

Suppose X1 ∈ Lp for all p ≥ 1. We will show this stablization by induction. For some m ∈ N, de-
fine:

Lj := lim
n→∞

E
[
(S̆n)

j
]
exists for 1 ≤ j ≤ m. (3)
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Consider the (m+ 1)st moment of S̆n:

E
[
Sm+1
n

]
= E [SnS

m
n ]

=
n∑

j=1

E
[
Xj(Xj + Sn\j)

m
]

=

n∑
j=1

m∑
k=0

(
m

k

)
E
[
Xk+1

j

]
E
[
Sm−k
n\j

]
(by the binomial formula)

= n

E [X1]E
[
Sm
n\1

]
+mE

[
X2

1

]︸ ︷︷ ︸
=1

E
[
Sm−1
n\1

]
+

m∑
k=2

(
m

k

)
E
[
Xk+1

1

]
E
[
Sm−k
n\1

] ,

where E [X1] = 0 means the first term vanishes. Since E
[
X2

1

]
= 1, we get, by applying the definition of

S̆n:

E
[
(S̆n)

m+1
]
= n−

m+1
2 E

[
Sm+1
n

]
= n−

m+1
2

(
mE

[
Sm−1
n\1

]
+

m∑
k=2

(
m

k

)
E
[
Xk+1

1

]
E
[
Sm−k
n\1

])
.

Substituting in the definition of S̆n, we obtain:

=

(
n− 1

n

)m−1
2

mE
[
(S̆n\1)

m−1
]

︸ ︷︷ ︸
:=Lm−1

+

m∑
k=2

(n− 1)
m−k

2

n
m−1

2︸ ︷︷ ︸
→0 as n→∞

(
m

k

)
E
[
Xk+1

1

]
E
[
(S̆n−1)

m−k
]

︸ ︷︷ ︸
:=Lm−k

.

So as n→ ∞, we obtain:

1 ·m · Lm−1. (4)

This gives us the following recursive relationship: Lm+1 = mLm−1. Since L1 = 0 and L2 = 1, the second
moment stabilizes all the moments:

L2m+1 = 0 (all odd indices) (5)

L2m = 1 · 3 · 4 · ... · (2m− 1) (product of all the odd numbers) = (2m+ 1)!! (6)

These are the moments of the standard Gaussian. So, the moments of S̆n converge to the correspond-
ing moments of a N(0, 1) random variable as n → ∞. Therefore, intuitively, the distribution of S̆n
“approximates” N(0, 1) as n→ ∞. As a corollary, if φ is a polynomimal of any degree, then

lim
n→∞

E
[
φ
(
S̆n

)]
=

1√
2π

∫
φ(x)e−

x2

2 dx = γ0, 1(φ)

where γ0,1 = N(0, 1).

1.2 Central Limit Theorems

Theorem 2 (Lindeberg’s Central Limit Theorem (CLT)). Assume that {Xn} is a sequence of independent
square-integrable random variables on a probability space, E [Xn] = 0. For every n ∈ N, set:

σn :=
√

Var(Xn)

Σn :=
√

Var(Sn) =

√√√√ n∑
j=1

σ2j ,
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where the final equality is true only if the Xn are independent. Set

S̆n =
Sn
Σn

(so E
[
S̆n

]
= 0 and E

[
S̆n

]
= 1). For all ε > 0, set:

gn(ε) :=
1

Σ2
n

n∑
j=1

E
[
X2

j ; |Xj | > εΣn

]
or

gn(ε) :=
n∑

j=1

E

[(
Xj

Σn

)2

;

∣∣∣∣Xj

Σn

∣∣∣∣ > ε

]
.

Under this setting, for every φ ∈ C3(R) with φ′′ and φ′′′ being bounded on R and for every ε > 0,∣∣∣E [φ(S̆n)]− γ0,1(φ)
∣∣∣ ≤ 1

2
(ε+

√
gn(ε))||φ′′′||n + gn(ε)||φ′′||n. (7)

In particular, if for all ε > 0,

lim
n→∞

gn(ε) = 0, (8)

(this is called Lindeberg’s Condition), then

lim
n→∞

E
[
φ(S̆n)

]
= γ0,1(φ).

Before the proof, we first make a quick remark. In the case when {Xn | n ≥ 1} is iid with E [X1] = 0,
E
[
X2

1

]
= 1 for all n ≥ 1, σn = 1, Σn =

√
n. Hence,

S̆n =
Sn√
n
,

and so, for all ε > 0,

gn(ε) =
1

Σ2
n

n∑
j=1

E
[
X2

j ; |Xj | > εΣn

]
=

1

n

n∑
j=1

E
[
X2

j ; |Xj | > ε
√
n
]

= E
[
X2

1 ; |X1| > ε
√
n
]
→ 0 as n→ ∞.

So, in this case, Lindeberg’s Condition is always satisfied.

Proof. Before the proof, the insight is as follows: as n → ∞, the contribution of the Xj ’s are getting
closer and closer to a centered Gaussian N(0, σ2j ) random variable.

Introduce {Zn | n ≥ 1} iid random variables independent of {Xn | n ≥ 1}. For all n ≥ 1, set Yn := σnZn.
Then, as we know Yn is a N(0, σ2n) random variable. Further define T̆n := 1

Σn

∑n
j=1 Yj . Note that T̆n is a

N(0, 1) random variable. Hence,

γ0,1(φ) = E
[
φ(T̆n)

]
⇒ E

[
φ(S̆n)

]
− γ0,1(φ) = E

[
φ(S̆n)− φ(T̆n)

]
.
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Hence,

φ(S̆n)− φ(T̆n) =φ

(
1

Σn
(X1 + ...+Xn)

)
− φ

(
1

Σn
(X1 + ...+Xn−1 + Yn)

)
+ φ

(
1

Σn
(X1 + ...+Xn−1 + Yn)

)
− φ

(
1

Σn
(X1 + ...+ Yn−1 + Yn)

)
+ φ

(
1

Σn
(X1 + ...+ Yn−1 + Yn)

)
− ...

− φ

(
1

Σn
(X1 + Y2 + ...+ Yn)

)
+ φ

(
1

Σn
(X1 + Y2 + ...+ Yn)

)
+ φ

(
1

Σn
(Y1 + ...+ Yn)

)
.

In light of this representation, for all 1 ≤ j ≤ n, set:

Uj :=
1

Σn
(X1 + ...+Xj−1 +Xj+1 + Yj+2 + ...+ Yn). (9)

Then, we can express the above more compactly as:

φ(S̆n)− φ(T̆n) =
n∑

j=1

(
φ

(
Uj +

Xj

Σn

)
− φ

(
Uj +

Yj
Σn

))
The idea is to now use Taylor expansions: recall that the Taylor Expansion of φ is:

φ(Uj + ξ) = φ(Uj) + ξφ′(Uj) +
ξ2

2
φ′′(Uj).+ ...

Set Rj(ξ) = φ(Uj + ξ)− φ(Uj)− ξφ′(Uj)− 1
2ξ

2φ′(Uj). Then,

E
[
φ

(
Uj +

Xj

Σn

)]
= E

[
Rj

(
Xj

Σn

)]
+ E [φ(Uj)] + E

[
Xj

Σn
φ′(Uj)

]
+

1

2
E

[
X2

j

Σn
φ′′(Uj)

]
.

Let’s simplify all these terms:

• Since Xj is independent of Uj , we can write:

E
[
Xj

Σn
φ′(Uj)

]
=

1

Σn
E [Xj ]E

[
φ′(Uj)

]
= 0.

1

2
E

[
X2

j

Σn
φ′′(Uj)

]
=

1

2
E

[
X2

j

Σ2
n

]
· E
[
φ′′(Uj)

]
=
σ2j
Σ2
n

E
[
φ′′(Uj)

]
Similarly,

E
[
φ

(
Uj +

Yj
Σn

)]
= E

[
Rj

(
Yj
Σn

)]
+ E [φ(Uj)] + 0 +

1

2

σ2j
Σ2
n

· E
[
φ′′(Uj)

]
.

Therefore, ∣∣∣E [φ(S̆n)− φ(T̆n)
]∣∣∣ ≤ n∑

j=1

∣∣∣∣E [Rj

(
Xj

Σn

)]
− E

[
Rj

(
Yj
Σn

)]∣∣∣∣
≤

n∑
j=1

∣∣∣∣E [Rj

(
Xj

Σn

)]∣∣∣∣+ ∣∣∣∣E [Rj

(
Yj
Σn

)]∣∣∣∣
Moreover, |Rj(ξ)| ≤

(
1
6ξ

3||φ′′′||n
)
∧
(
ξ2||φ′′||n

)
, where the first case happens if ξ is small and the second

case happens if ξ is not small. Hence, for all ε > 0, we have:

n∑
j=1

∣∣∣∣E [Rj

(
Xj

Σn

)]∣∣∣∣ ≤ 1

6
||φ′′||n

n∑
j=1

E
[
|Xj |3

Σ3
n

; |Xj | ≤ εΣn

]
+ ||φ′′||n

n∑
j=1

E
[
|Xj |2

Σ2
n

;
|Xj |
Σn

> ε

]
,
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where the first term in the sum comes from the bound for ξ being small and the second term in the sum
comes fro the bound for ξ being not so small. Pulling one of the |Xj | out of the fraction in the first term
of the sum, and using the bound given, we obtain:

≤ ε

6
||φ′′||n

n∑
j=1

E
[
X2

j

]
Σ2
n

+ ||φ′′||n · gn(ε),

which is good, since we have
∑n

j=1

σ2
j

Σ2
n
= 1. Hence,

n∑
j=1

∣∣∣∣E [Rj

(
Xj

Σn

)]∣∣∣∣ ≤ ε

6
||φ′′|||n + ||φ′′||n · gn(ε).

Similarly,

n∑
j=1

E
[∣∣∣∣Rj

(
Yj
Σn

)∣∣∣∣] ≤ 1

6
||φ′′′||nE

[
|Zn|3

] n∑
j=1

σ3j
Σ3
n

≤ 1

3
||φ′′′||n max

1≤j≤n

σj
Σn

·
n∑

j=1

σ2j
Σ2
n︸ ︷︷ ︸

=1

.

We have that for all 1 ≤ j ≤ n,

σ2j = E
[
X2

j

]
= E

[
X2

j ; |Xj | ≤ εΣn

]
+ E

[
X2

j ; |Xj | > εΣn

]
= ε2Σ2

n +

n∑
l=1

E
[
X2

l ; |Xl| > εΣn

]
.

Hence,

max
1≤j≤n

σ2j
Σ2
n

≤ ε2 + gn(ε) ⇒ max
1≤j≤n

σj
Σn

≤
√
ε2 + gn(ε) ≤ ε+

√
gn(ε).

Collecting all the bounds,∣∣∣E [φ(S̆n)]− E
[
φ(T̆n)

]∣∣∣ ≤ ε

6
||φ′′′||n + gn(ε)||φ′′||n +

1

3
||φ′′′||n(ε+

√
gn(ε)

≤ 1

2

(
ε+

√
gn(ε)

)
||φ′′′||n + gn(ε)||φ′′||n

which proves the theorem.

Corrolary 1. Under the same setting as before, if Lindeberg’s condition holds, then for all φ ∈ C∞
c (R),

lim
n→∞

E
[
φ(S̆n)

]
= γ0,1(φ). (10)

In particular, we can show that for all a, b ∈ R, a < b:

P
(
a ≤ S̆n ≤ b

)
= γ0,1(]a, b]) =

1√
2π

∫ b

a
e−

x2

2 dx.
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Proof. The proof only requires a standard fact from analysis, which we will use quite a lot in this course.

Fact. For [a, b] closed, there exists a sequence of functions {φk | k ≥ 1} ⊆ C∞
c (R) such that 0 ≤ φk ≤ 1

for all k ≥ 1 and φk ↓ χ[a,b]. The picture that you want to have in mind is:

Therefore, for all k ≥ 1, we have

lim sup
n

P
(
S̆n ∈ [a, b]

)
≤ lim

n
E
[
φk(S̆n)

]
= γ0,1(φk),

where the final equality follows from the Lindeberg’s CLT. As k → ∞,

γ0,1(φk) → γ0,1([a, b]).

Hence, lim supn P
(
a ≤ S̆n ≤ b

)
≤ γ0,1([a, b]). Similarly, for ]a, b[, there exists a sequence of functions

{ψk | k ≥ 1} such that 0 ≤ ψk ≤ 1 for all k ≥ 1, ψk ↑ χ]a,b[ (so, we approach the indicator function from
below). Then,

lim inf
n

P
(
a < S̆n < b

)
≥ lim

n
E
[
ψk(S̆n)

]
= γ0,1(φk) → γ0,1(]a, b[).

Since γ0,1(]a, b[) = γ0,1([a, b]) we have the desired limit statement.

So, now we want to look at smooth functions that approximates the indicator function χ of a set we
are interested in studying. Let’s first do some preparation.

Definition 1 (Convolution). Given µ and ν, two probability measures on (Rd,B(Rd)) given by: for all
B ∈ B(Rd),

µ ∗ ν :=

∫
Rd

ν(B − x)µ(dx), (11)

where recall the set B − x := {y ∈ Rd | y + x ∈ B}.

Remarks. It’s easy to check with Fubini’s Theorem that:

1. x 7→ ν(B − x) is a measure with respect to B(Rd).
2. µ ∗ ν is again a probability measure on (Rd,B(Rd)).
3. µ ∗ ν = ν ∗ µ. If ρ is another probability measure on Rd, then,

(µ ∗ ν) ∗ ρ = µ ∗ (ν ∗ ρ). (12)

In the next proposition, we will see how convolution corresponds to taking the sum of two independent
random variables.

Proposition 1. Given X and Y two independent random variables, Rd-valued, with LX = µ and LY = ν.
If X and Y are independent, then

LX+Y = µ ∗ ν. (13)
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Proof. To see this, we first have that since X and Y are independent,

L(X,Y ) = LX · LY = µ× ν.

So, using Fubini’s theorem, we obtain that for all B ∈ B(Rd),

P (X + Y ∈ B) =

∫∫
Rd×Rd

χB(x+ y)(µ× ν)

=

∫
Rd

(∫
Rd

χB(x+ y)ν(dy)

)
µ(dx)

= µ ∗ ν(B).

Remark. It’s also possible to define the convolution of functions. Given f and g two functions on
Rd, for all x ∈ Rd:

f ∗ g(x) :=
∫
Rd

f(x− y)g(y)dy,

provided that the integral is defined. Similarly, f ∗ g = g ∗ f and (f ∗ g) ∗ h = f ∗ (g ∗ h).

Corrolary 2. If X and Y are independent, and X has a density f and Y has a density g, then X + Y
has a density f ∗ g.

Notation. for every x, ξ ∈ Rd, we will denote by (·, ·) the dot product:

(x, ξ) :=
d∑

j=1

xjξj .

We will denote by i :=
√
−1 the imaginary unit. For z ∈ C, let z be the complex conjugate of z. We

consider functions φ : Rd → C. As we’d expect, φ is Borel ⇐⇒ the real and imaginary parts of φ are
Borel functions in the standard sense. If µ is a probability measure on Rd, then we write that φ ∈ Lp(µ)
if ∫

Rd

|φ(x)|pµ(dx) <∞.

(note that |φ(x)|2 = Re2(φ)+ Im(φ)). Given two functions ψ and φ, C-valued on Rd, their inner product
is given by:

⟨φ,ψ⟩ = (φ,ψ)L2 =

∫
Rd

φ(x)ψ(x)dx.

Definition 2 (Characteristic Function). Given a probability measure µ on (Rd,B(Rd)), the character-
istic function of µ, denoted by µ̂, is a function on Rd such that for all ξ ∈ Rd,

µ̂(ξ) :=

∫
Rd

ei(x,ξ)µ(dx). (14)

µ̂ : Rd → C is well-defined for every ξ, measurable (Fubini) with respect to B(Rd), and |µ̂| ≤ 1 for all
ξ ∈ Rd.

We can similarly define the characteristic function of a random variable. If X is a random variable
on some probability space such that LX = µ, then

µ̂(ξ) = E
[
ei(X,ξ)

]
.
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We now introduce some remarks on characteristic functions.

1. µ̂ : Rd → C is a continuous function. (Can easily verify this by taking a sequence ξn, and use
(DOM) since everything is bounded by 1).

2. If µ is symmetric, i.e., ∀ A ∈ B(Rd), µ(A) = µ(−A). Then, µ̂(ξ) ∈ R for all ξ ∈ Rd, since by
symmetry, the imaginary part will cancel.

3. If µ and ν are two probability measures, then,

ˆµ ∗ ν(ξ) = µ̂(ξ) · ν̂(ξ) = µ̂(ξ) · ν̂(ξ),

for all ξ ∈ Rd. To see this, implement with random variables. Take X and Y independent such that
LX = µ and LY = ν. Then,

ˆµ ∗ ν(ξ) = E
[
ei(X+Y,ξ)

]
= E

[
ei(X,ξ)ei(Y,ξ)

]
= E

[
ei(X,ξ)

]
E
[
ei(Y,ξ)

]
= µ̂(ξ) · ν̂(ξ).

4. µ̂ contains information about “moments”. To see this, assume that X is a random variable such
that LX = µ and E [|X|p] <∞ for some p ≥ 1. Then, for every multi-index α = (α1, α2, ..., αd) ∈ Nd

such that |α| = α1 + α2 + ...+ αd ≤ p. Then,

∂αµ̂(ξ) := ∂α1
1 ∂α2

2 ...∂αd
d µ̂(ξ)

=

∫
Rd

(ix)αei(x,ξ)µ(dx).

This follows from (DOM) . The notation (ix)α means i|α|xα1
1 · xα2

2 ...xαd
d . In particular, we have

[∂αµ̂(ξ)]ξ=0 = i|α|E [Xα] .

The E [Xα] term is called the cross-moment. The notation Xα means Xα1
1 Xα2

2 · · ·Xαd
d .

(a) In general, µ̂ ∈ Cp(Rd) does NOT imply that E [|X|p] < ∞. For example, consider that µ is
the probability measure on R with density:

f(x) =

{
0 if |x| < 2

c
x2 ln(|x|) if |x| ≥ 2,

where c > 0 is a constant such that
∫
R f(x)dx = 1. Now let X be a random variable such that

LX = µ. On one hand,

E [|X|] = 2

∫
2∞

dx

x ln(x)
· c = ∞ ⇒ X /∈ L1.

On the other hand,

µ̂(ξ) = 2c

∫ ∞

2

cos(xξ)

x2 ln(x)
dx.

One can verify that µ̂ is differentiable at every ξ ∈ R and µ̂′(0) = 0.
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Example 1. On R,

∂̂m,σ2(ξ) = eimξe−
1
2
σ2ξ2 .

On Rd,

∂̂m⃗,c(ξ) = ei(m⃗,ξ) · e−
(ξ,cξ)

2 ,

for all ξ ∈ Rd. Observe that the characteristic functions have super-exponential decay like the densities.

Definition 3. Given a function φ on Rd, the Fourier Transform of φ, denoted by φ̂, is given by: for
all φ ∈ Rd:

φ̂(ξ) :=

∫
Rd

ei(x,ξ)φ(x)dx, (15)

provided that the integral is defined. In particular, this means that if µ is a probability measure with
density φ, then for all ξ ∈ Rd:

µ̂(ξ) = φ̂(ξ). (16)

The next theorem tells us that the characteristic function uniquely defines a probability measure.

Theorem 3. Let µ and ν be two probability measures on (Rd,B(Rd)). If µ̂(ξ) = ν̂(ξ) for all ξ ∈ Rd, then
µ = ν.

The proof will follow from these three lemmas.

Lemma 1. Let µ and ν be two probability measures. If µ(φ) = ν(φ) for all φ ∈ Cb(Rd;C). Then, µ = ν.

Proof. Since the open sets form a generating π-system, it’s sufficient to show that for every open set
B ⊆ Rd, µ(B) = ν(B). Take B open, and consider d(x,Bc) := infy∈Bc |x − y|. Then, we know from
analysis that x 7→ d(x,Bc) is continuous. For all k ≥ 1, set

φk(x) :=

(
d(x,Bc)

1 + d(x,Bc)

)1/k

.

Ten, φk ∈ [0, 1] and for each k, φk is continuous. We have that φk ↑ χB. Why?

lim
k→∞

φk(x) =

{
1 if d(x,Bc) > 0 ⇐⇒ x ∈ Bc since closed

0 if d(x,Bc) = 0 ⇐⇒ x ∈ Bc.

By (DOM) or (MON) ,

µ(B) = lim
k
µ(φk) = lim

k
ν(φk) = ν(B).

Lemma 2. For all φ ∈ Cb(Rd) there exists a sequence {φm | m ≥ 1} ⊆ C∞
c (Rd) such that ||φm||n ≤ ||φn||

for all m ≥ 1 and limm→∞ φm = φ.

(As a result of Lemma 2, µ = ν if µ(φ) = ν(φ) for all C∞
c (Rd).
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Lemma 3 (A Generalization of Plancherel’s Theorem). If ψ ∈ C∞
c (Rd) and µ is a probability measure

on Rd, then

µ(ψ) =

∫
Rd

ψ(x)µ(dx) = (2π)−d

∫
Rd

ψ̂(ξ)µ̂(ξ)dξ, (17)

i.e., µ(ψ) = ⟨ψ̂, µ̂⟩.

As a result of Lemma 3, µ = ν if µ̂ = ν̂. We will neatly collect this into a theorem.

Theorem 4. Let µ and ν be two probability measures on (Rd,B(Rd)). Then,

µ = ν ⇐⇒ µ(φ) = ν(φ) ∀ φ ∈ Cb(Rd)

⇐⇒ µ(ψ) = ν(ψ) ∀ ψ ∈ C∞
c (Rd)

⇐⇒ µ̂(ξ) = ν̂(ξ) ∀ξ ∈ Rd.

We can think of Cb(Rd) and C∞
c as classes of test functions that test how measure behaves.

1.3 Weak Convergence of Probability Measures

There are only two types of convergence which will be covered in this course.

Definition 4 (Weak Convergence of Measure). Assume that {µn | n ≥ 1} and µ are probability measures
on B(Rd). We say that µn converges weakly to µ, and we write “µn ⇒ µ” if for all φ ∈ Cb(Rd;C):

lim
n→∞

µn(φ) = µ(φ). (18)

We also have cnvergence in distribution of random variables.

Definition 5. Assume that {Xn} and X are Rd-valued random variables on (Ω,F ,P). Xn converges to
X in distribution, denoted by “Xn → X in distribution”, if LXn → LX , i.e., for all φ ∈ Cb(Rd),

lim
n→∞

E [φ(Xn)] = E [φ(X)] . (19)

Remark.

1. For two probability measures µ and ν on Rd, the most natural way of putting a metric on the space
of probability measures is the total variation distance between µ and ν:

||µ− ν||var := sup{|µ(A)− ν(A)| | A ∈ B(Rd)}. (20)

2. Given {µn} and µ probability measures on Rd, if limn→∞ ||µn − µ||var = 0, then µn converges to µ
in the strong sense.

Exercise. verify that if ||µn − µ||var → 0 then µn ⇒ µ.

It is often inconvenient to work with strong convergence. For example, we know that limn→∞
1
n = 0.

If µn := δ1/n for all n ≥ 0, then µ = δ0. So, naturally, µn should be getting closer and closer to µ.
However, if you look at the total variation distance, for all n ≥ 1, ||µn − µ||var = 1. Hence, µn does
not convergence to µ in the strong sense. However, if we relax our standards, µn ⇒ µ because for all
φ ∈ Cb(R), µn(φ) = φ

(
1
n

)
φ(0) = µ(φ) where the convergence follows from continuity.

1. Let {Xn} and X be Rd-valued random variables on (Ω,F ,P).
(a) If Xn → X in probability, then Xn → X in distribution.
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(b) If Xn → X in distribution and X ≡ c for some constant c, then Xn → X in probability.

2. Let {Xn} and X be R-valued random variables such that Xn has the distribution function Fn for
all n ≥ 1 and X has distribution function F . Then,

(a) If Xn → X in distribution, then limn→∞ Fn(x) = F (x)at every continuous point x of F .
(b) If Xn has density fn for all n ≥ 1 and X has density f , and fn → f a.e. with respect to the

Lebesgue measure on R, then Xn → X in distribution.

Proposition 2. Let {µn} and µ be probability measures on (Rd,B(Rd)). If for every subsequence
{nk} ⊆ N, there exists a further subsequence, {nkl} ⊆ {nk} such that {µnkl

} ⇒ µ, then µn ⇒ µ.

Proposition 3. If {µn | n ≥ 1} is a sequence of probability measures on Rd and µn ⇒ µ and µn ⇒ ν,
then µ = ν (the limit of weak convergence is unique).

Proof. We can very briefly sketch the argument: for all φ ∈ Cb(Rd),

µ(φ) = lim
n→∞

µn(φ) = ν(φ)

⇒ integrals match on all continuous and bounded functions

⇒ µ = ν.

The following proposition will be useful for the homework.

Proposition 4. Suppose µn ⇒ µ. Then:

1. For all open sets G ⊆ Rd,

µ(G) ≤ lim inf
n

µn(G). (21)

2. For all closed sets F ⊆ Rd,

µ(F ) ≥ lim sup
n

µn(F ). (22)

Proof. We will only prove (i). Given an open set G ⊆ Rd, there exists a sequence {φk | k ≥ 1} ⊆ Cb(Rd)
such that φk ↑ χG. By (MON) or (DOM) ,

µ(G) = lim
k→∞

µ(φk) = lim
k→∞

lim
n→∞

µn(φk) ≤ lim inf
n→∞

µn(G),

where the second equality follows from weak convergence, and the final inequality follows from the fact
that for all k ≥ 1, φk ≤ χG.

In fact, if µ(G) ≤ lim infn µn(G) for every open set G ⊆ Rd, then µn ⇒ µ.

1.4 Tightness of a Family, Class, or Collection of Probability Measures

Definition 6. Let {µn | n ≥ 1} be a sequence of probability measures on Rd. We say that {µn} is tight
if for all ε > 0, there exists a compact set Kε ⊆ Rd such that

sup
n
µn(K

c
ε) < ε. (23)

This is telling us that we can make the whole family uniformly small.
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Remark. “tightness” means that the mass is concentrated in a way that is uniform for the µn’s. For
example:

• {µn = γ0,1/n | n ≥ 1} is a tight family (the variance goes down as n→ ∞.
• {νn = γ0,n | n ≥ 1} is not tight: as n grows, the variance gets more spread out.

Theorem 5 (Prokhorov’s Theorem). Let {µn | n ≥ 1} be a sequence of probability measures on Rd.
Then:

1. If there exists a probability measure on Rd such that µn ⇒ µ, then {µn | n ≥ 1} is tight.
2. If {µn | n ≥ 1} is tight, then there exists a subsequence {nk | n ≥ 1} ⊆ N and a probability measure

µ on Rd such that along the subsequence, µnk
⇒ µ as k → ∞.

Proof. (i). Assume that µn ⇒ µ. For a contradiction, assume that {µn | n ≥ 1} is not tight: there exists
an η > 0 such that for all compact sets K ⊆ Rd,

sup
n
µn(K

c
n) > η.

We will use this statement to extract a subseqeuence: for all k ≥ 1, there exists an nk such that
µnk

(B(0, k)
c
) > η. Then, for every R > 0 when k is sufficiently large, i.e., k ≥ R, we get from µnk

⇒ µ:

µ(B(0, R)) ≤ lim inf
k→∞

µnk
(B(0, R)) (weak convergence)

≤ lim inf
k→∞

µnk
(B(0, k))

≤ 1− η.

Therefore, for all R > 0,

µ(B(0, R)) ≤ 1− η ⇒ µ(Rd) < 1− η,

where the implication follows from sending R → ∞ and (MON) . However, this is not possible, since
µ(Rd) = 1 since µ is a probability measure.

Task: Give a rigorous proof of (i) of Prokhorov’s Theorem. You may use:

1. Riesz-Representation Theorem
2. Stone-Weierstrass Theorem (separability of space of continuous functions on compact sets).

Theorem 6. Let {µn | n ≥ 1} and µ be probability measures. If µn ⇒ µ, then

lim
n→∞

µ̂n(ξ) = µ̂(ξ) ∀ξ ∈ Rd,

(so weak convergence of measure gives us convergence of characteristic functions) and this convergence is
uniform on compact sets, i.e., for all compact K ⊆ Rd,

lim
n→∞

sup
ξ∈K

|µ̂n(ξ)− µ̂(ξ)| = 0. (24)

Furthermore, for all φ ∈ Cb(Rd) if {φn | n ≥ 1} ⊆ Cb(Rd) such that supn ||φn||n < ∞ and φn ⇒ φ
uniformly on compact sets, then limn→∞ µn(φn) = µ(φ).

Proof. For all ξ ∈ Rd, the map x ∈ Rd 7→ ei(x,ξ) ∈ C is continuous and bounded. Hence,

µn ⇒ µ⇒ µ̂n(ξ) → µ̂(ξ).
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We will now prove the last statement. Sicne µn ⇒ µ, the sequence {µn | n ≥ 1} is tight for all ε > 0.
Hence, there exists a compact set Kε ⊆ Rd such that supn µn(K

c
ε) < ε and µ(Kc

ε) < ε. Hence,

|µn(φn)− µ(φ)| = |µn(φn)− µn(φ)|+ |µn(φ)− µ(φ)|︸ ︷︷ ︸
→0 as n→∞

≤ |µn(χKε · (φn − φ))|+
∣∣µn(χKc

ε
· (φn − φ))

∣∣
≤ sup

x∈Kε

|φn(x)− φ(x)|︸ ︷︷ ︸
→0 as n→∞

·1 + sup
n
µn(K

c
ε)︸ ︷︷ ︸

<ε

· (sup
n

||φn||k + ||φ||n)︸ ︷︷ ︸
<∞

,

where the first convergence to zero occurs since φn → φ uniformly on compact sets Kε, the second term
is assumed to be less than ε and the final term was assumed to be finite. Therefore, µn(φn) → µ(φ).

In particular, if {ξn | n ≥ 1} ⊆ Rd such that ξn → ξ as n → ∞, then µ̂n(ξn) → µ̂(ξ) as n → ∞,
because we could simply take φn = ei(·,ξ/n) and φ = ei(·,ξ) (∗).

We need to now prove that for all compact sets K ⊆ Rd,

sup
ξ∈K

|µ̂n(ξ)− µ̂(ξ)| → 0 as n→ ∞.

For a contradiction, assume otherwise: there exists K compact, η > 0, a subsequence {nk} ⊆ N such that

sup
ξ∈K

|µ̂nk
(ξ)− µ̂(ξ)| > η.

Thus, there exists a subsequence ξnk
∈ K such that

|µ̂nk
(ξnk

)− µ̂(ξnk
)| > η.

Since K is compact, {ξnk
| k} ⊆ K ⇒ that there exists {nkl ⊆ {nk} and there exists a ξ0 ∈ K such that

ξnkl
→ ξ0. Hence, ∣∣∣µ̂nkl

(ξnkl
)− µ(ξnkl

)
∣∣∣ ≤ ∣∣∣µ̂nkl

(ξnkl
)− µ̂(ξ0)

∣∣∣︸ ︷︷ ︸
→0 by (∗)

+
∣∣∣µ̂(ξ0)− µ̂(ξnkl

)
∣∣∣︸ ︷︷ ︸

→0 since µ̂ is cts

Contradiction! Therefore, µ̂n → µ̂ uniformly on compact sets.

Theorem 7. If {µn} is a sequence of probability measures on Rd and {µn} is tight and limn→∞ µ̂n(ξ) =
f(ξ) for all ξ ∈ Rd, then there exists a probability measure µ on Rd such that µn ⇒ µ and µ̂ = f .

Proof. For all subsequences {nk} ⊆ N, since {µnk
} is tight, there exists a subsequence {nkl ⊆ {nk} and a

probability measure µ{nk} (the existence depends on the choice of {nk}, hence the superscript) such that
µnkl

⇒ µ{nk}. According to the assumption on µ̂n,

ˆµ{nk} = f(ξ) ∀ ξ ∈ Rd,

i.e., f doesn’t depend on the choice of subsequence {nk}. Hence, µ{nk} = µ is identical for all choices of
{nk}. Hence, convergence is achieved along the full subsequence:

µn ⇒ µ and µ̂ = f.
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Remark. the “tightness” condition is necessary in the previous theorem. To see why, consider the
following example to see what happens when the tightness assumption is dropped.

• for all n ≥ 1, set µn = γ(0,n). Clearly, {µn | n ≥ 1} is not tight. In the limit, for all ξ ∈ R:

µ̂n = exp

(
−nξ
2

)
→

{
0 if ξ ̸= 0

1 if ξ = 0.

So, limn→∞ µ̂n(ξ) exists for every ξ ∈ R. But, we will show that it cannot converge to a probability
measure.

• claim: µn does not weakly converge to µ for any probability measure µ. For a contradiction, assume
otherwise: suppose that there exists a probability measure µ such that µn ⇒ µ. Then, for every
L > 0,

µ(]− L,+L[) ≤ lim inf
n

µn(]− L,+L[) = 0,

which is not possible.

The following theorem gives us an alternate, easier way to check if there exists a probability measure
such that µn ⇒ µ, since its condition (continuity at zero) is easier to check than checking if a family of
measures is tight.

Theorem 8 (Levy’s Continuity Theorem). Let {µn | n ≥ 1} be a sequence of probability measures on Rd

such that for all ξ ∈ Rd,

lim
n→∞

µ̂n(ξ) = f(ξ), (25)

exists. Further assume that f : Rd → C is continuous at zero (this is the condition which replaces tight-

ness). Then, there exists a probability measure µ on Rd such that µn ⇒ µ and µ̂ = f .

Before the proof, we first require a lovely technical lemma.

Lemma 4. Given µ a probability measure on (Rd,B(Rd)), for all r > 0, R > 0, for all unit vectors e⃗ ∈ Rd,
we have the following two estimates:

1. |1− µ̂(re⃗)| ≤ rR+ 2µ({x ∈ Rd | |(x⃗, e⃗) > R})
2. set m(t) := inf |u|>t

(
1− sin(u)

u

)
for all t > 0. Then,

µ({x ∈ Rd | |(x⃗, e⃗)| > R}) ≤
(
1

r

∫ r

0
|1− µ̂(se⃗)|ds

)
· 1

m(rR)
(26)

Proof. Will include later.

Proof. (Proof of Levy’s Continuity Theorem). We only need to show that if µ̂n(ξ) → f(ξ) for all
ξ ∈ Rd and f is continuous at zero, then {µn | n ≥ 1} is tight. Obviously,

f(0) = lim
n→∞

µ̂n(0) = 1.

By continuity, for all ε > 0, there exists a δ > 0 such that for all |ξ| ≤ δ, |1− f(ξ)| < ε. For j = 1, ..., d,
let e⃗j be the jth standard basis vector of Rd. By (ii) of the previous lemma, for all n ≥ 1,

µn

({
x ∈ Rd | |(x⃗, e⃗j)| >

2

δ

})
≤ 1

δ

∫ δ

0
|1− µ̂(sêj)ds ·

1

m(2)
→ 1

δ

∫ δ

0
|(1− f(se⃗j)|ds

1

m(t)
≤ 2ε,
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where the convergence follows from (DOM) . Hence, for all ε > 0, there exists an R = 2
δ , there exists an

N ≥ 1, such that for all n ≥ N ,

µn

(
B(0,

√
dR

c)
≤

d∑
j=1

µn({x ∈ Rd | |(x⃗, e⃗j)| > R}) ≤ 2dε.

So, for n = 1, ..., N − 1, if necessary, we can make R even larger such that

sup
1≤n≤N−1

µn

(
B(0,

√
dR

c)
≤ 2dε.

Hence, as long as R is sufficiently large, we have supn≥1 µn

(
B(0,

√
dR

c)
≤ 2dε. Hence, the family

{µn | n ≥ 1} is tight, and the rest follows.

Applications and Examples

1. CLT for i.i.d. sequences:

Theorem 9. Let {Xn} be a sequence of iid random variables, R-valued, with E [X1] = m and
Var[X1] = σ2. If

S̆n =
Sn − nm√

n
,

then LS̆n
⇒ γ0,σ2 as n→ ∞.

Proof. It suffices to show that if µn := LS̆n
, then limn→∞ µ̂n(ξ) = exp

(
−σ2ξ2

2

)
for all ξ ∈ R.

W.L.O.G., assume that m = 0, otherwise re-centre the random variables. Then, for every ξ ∈ R,

µ̂n(ξ) = E
[
eiS̆n·ξ

]
= E

[
e
iSn· ξ√

n

]
=

(
E
[
e
iX1

ξ√
n

])n

=

(
ρ

(
ξ√
n

))n

, where ρ(ξ) := E
[
eiX1ξ

]
.

Since ρ′(0) = E [X1] = 0 and −ρ′′(0) = E
[
X2

1

]
= 0, Taylor expand ρ and use this information:

ρ

(
ξ√
n

)
= 1 + ρ′(0)

ξ√
n
+
ρ′′(0)

2

ξ2

n
+O

(
1

n

)
= 1 + 0− σ2

2

ξ2

n
+O

(
1

n

)
⇒ µ̂n(ξ) =

(
1− σ2ξ2

2n
+O

(
1

n

))n

→ exp

(
−σ

2ξ2

2

)
= ˆγ0,1(ξ).

2. Characterization of γ0,1:

Proposition 5. Let X and Y be i.i.d. random variables with µ = LX = LY such that E [X] = 0
and E

[
X2
]
= 1. If X + Y and X − Y are also independent, then µ = γ0,1.
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Proof. Set Z := X + Y and W := X − Y . Then, for all ξ ∈ R,

E
[
eiZξ

]
= E

[
ei(X+Y )ξ

]
= (µ̂(ξ))2 (where equality follows from independence).

E
[
eiWξ

]
= µ̂(ξ)µ̂(−ξ).

Note that according to the definition, 2X = Z +W . Then,

µ̂(2ξ) = E
[
ei2Xξ

]
= E

[
ei(Z+W )ξ

]
= E

[
eiZξ

]
E
[
eiWξ

]
(by independence)

= (µ̂(ξ))3µ̂(−ξ).

For all ξ ∈ R,

µ̂(2ξ) = (µ̂(ξ))3µ̂(−ξ).

Similarly,

µ̂(−2ξ) = (µ̂(−ξ))3µ̂(ξ).

Taking the ratio of the two expression yields,

µ̂(2ξ)

µ̂(−2ξ)
=

(
µ̂(ξ)

µ̂(−ξ)

)2

for all ξ ∈ R.

If g(ξ) := µ̂(ξ)
µ̂(−ξ) , then it satisfies g(2ξ) = (g(ξ))2 for all ξ ∈ R. This relationship is the key. Iterating

this identity gives

g(ξ) =

(
g

(
ξ

2

))2

= ... =

(
g

(
ξ

2n

))2n

for all ξ ∈ R, n ≥ 1.

Taylor expand g near zero:

g

(
ξ

2n

)
= g(0) + g′(0)

ξ

2n
+O

(
1

2n

)
.

Using the fact that g(0) = 1 and g′(0) = 0, we recover the special limit for e:

g(ξ) =

(
1 + 0 +O

(
1

2n

))2n

→ 1 as n→ ∞.

Hence, µ̂(ξ) = µ̂(−ξ) for all ξ which gives that µ̂ is even and hence µ̂ is symmetric. Hence,

⇒ µ̂(2ξ) = (µ̂(ξ))4 for all ξ ∈ R

⇒ µ̂(ξ) =

(
µ̂

(
ξ

2n

))22n

for all ξ ∈ R, for all n ≥ 1.

Taylor expanding µ̂ near zero yields:

µ̂

(
ξ

2n

)
= 1 + 0− 1

2

ξ2

22n
+O

(
1

22n

)
.

Hence,

µ̂(ξ) =

(
1− ξ2

2

1

22n
+O

(
1

22n

))22n

→ e−
−ξ2

2 as n→ ∞.
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The following theorem is another application of Levy’s Continuity Theorem.

Theorem 10 (Levy’s Equivalence Theorem). Let {Xn | n ≥ 1} be independent random variables on some
probability space (Ω,F ,P). Set Sn :=

∑n
j=1Xj. Then, the following are equivalent:

1. Sn converges a.s. to some random variable S, i.e.,
∑n

j=1Xj converges almost surely.
2. Sn converges in probability to some random variable S.
3. Sn converges in distribution to S.

The idea of this theorem is that it’s very hard for independent random variables to converge, so if
they converge in one sense, they converge in all senses.

Proof. This time, we only need to show that (iii) ⇒ (ii). Assume that µn := LSn for every n ∈ N and
µn ⇒ µ for some probability measure µ. We will show that {Sn} forms a Cauchy sequence in probability.
Recall the definition of that:

∀ ε > 0, ∃ N > 1 s.t. sup
m≥N

P (|Sm − Sn| > ε) ≤ ε.

For a contradiction, assume otherwise. Then, there exists an η > 0 and a subsequence {nk} such that
along the subsequence, the Cauchy condition above is violated:

P
(
|Snk+1

− Snk
| > η

)
≥ η. (27)

For every k, set vk := LSnk+1
−Snk

⇒ µnk+1
= µnk

∗vk (since this is a sum of independent random variables)

(∗). Since µn ⇒ µ, the sequence {µn | n ≥ 1} is tight ⇒ for all ε > 0, there exists an M > 0 such that

sup
n
µn(B(0,M)

c
) ≤ ε.

Hence, for all k ≥ 1,

vk(B(0, 2M)
c
) = P

(
|Snk−1

− Snk
| > 2M

)
≤ 2 sup

n
P (|Sn| > M)

= 2 sup
n
µn(B(0,M)c)

≤ 2ε.

This shows that the sequence {vk} is tight. Hence, by the second part of the previous theorem, there
exists a subsequence {kl | l > 1} ⊆ N and a probability measure v such that vkl ⇒ v as l → ∞ (∗∗).
Combining (∗) and (∗∗), we obtain that µ = µ ∗ v.

Proposition / Remark: Let v be a probability measure on Rd. If there exists a probability mea-
sure µ on Rd such that µ = µ ∗ v, then v = δ0.

Proof : For every ξ ∈ Rd,

µ̂(ξ) = µ̂(ξ) · v̂(ξ) ⇒ v̂(ξ) = 1 if µ̂(ξ) ̸= 0.

Hence, there exists some positive number r such that µ̂(ξ) ̸= 0 for ξ ∈ B(0, r). Hence, for all ξ ∈ B(0, r),

v̂(ξ) = 1.

Hence, for all ξ ∈ B(0, r),∫
Rd

cos(x, ξ)v(dx) = 1 ⇒ (x, ξ) = 0 mod 2π for v- a.e x.
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Given any unit vector e ∈ Rd, choose ξ1, ξ2 ∈ B(0, r), ξ1 and ξ2 are both along the direction e and ξ2 = ρξ1
where ρ /∈ Q. Hence,

⇒ (x, ξ1) = 0 mod 2π for v almost every x.

⇒ (x, ξ2) = ρ(x, ξ1) = 0 mod 2π for v almost every x.

⇒ (x, ξ1) = 0 for v almost every x.

⇒ (x, e) = 0 v almost everywhere for all unit vectors

⇒ v = δ0.

Going back to the main proof, we have therefore proven that vkl ⇒ δ0, i.e., Snkl
+1 − Snkl

→ 0 in
distribution. Since this is a constant, we have therefore that

Snkl+1
− Snkl

→ 0 in probability.

But, this contradicts (27). Hence, we have that {Sn} forms a Cauchy sequence in probability ⇒ Sn → S
in probability for some random variable S.

2 Infinitely Divisible Laws

Definition 7 (Infinitely Divisible). Let µ be a probability measure on (Rd,B(Rd)). Then, we say that
µ is infinitely divisible if for every n ≥ 1, there exists a v(n) probability measure on (Rd,B(Rd)) such
that

v(n) ∗ v(n) ∗ ... ∗ v(n)︸ ︷︷ ︸
n times

= µ, (28)

Equivalently, (v̂(ξ))n = µ̂(ξ) for all ξ ∈ Rd.

Notation-wise, we write I(Rd) as the collection of all the infinitely divisible laws on Rd. If µ ∈ I(Rd),
then we will write v(n) in the definition as µ1/n, i.e., this means that

µ1/n ∗ µ1/n ∗ ... ∗ µ1/n︸ ︷︷ ︸
n copies

= µ.

We introduce a few remarks:

1. If µ ∈ I(Rd), then for every n ≥ 1,

(µ̂1/n(ξ))
n = µ̂(ξ) ∀ξ ∈ Rd.

Heuristically, we want to study the “nth” root of µ̂.
2. If µ, ν ∈ I(Rd), then for every n ∈ N,

ˆ(µ1/n ∗ ν1/n(ξ))
n
= µ̂(ξ) · ν̂(ξ) = ˆµ ∗ ν(ξ).

This implies that I is closed under convolution:

µ1/n ∗ ν1/n = (µ ∗ ν)1/n ⇒ µ ∗ ν ∈ I(Rd). (29)

3. If {µk} is a sequence of infinitely divisible laws, µk ⇒ µ as k → ∞ and for all n ≥ 1, µk,1/n ⇒ ν(n)
as k → ∞ for some probability measure v(n), then µ ∈ I(Rd) and µ1/n = ν(n).
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2.1 Examples of Infinitely Divisible Laws

1. Trivial Examples: for m⃗ ∈ Rd, δm ∈ I(Rd).

(δm)1/n = δm/n.

2. Gaussian measures: for all m ∈ Rd, for all C = (Cij)d×d ≥ 0 (non-negative definite) such that

ˆγm,C(ξ) = ei(m,ξ)e−1/2(ξ,Cξ)

Hence, for all n ∈ N , (
γm/n,C/n

)n
= γ̂m,C(ξ)

for all ξ ∈ Rd. Hence, all Gaussian measures are infinitely divisible with (γm,C)1/n = γm/n,C/n.
3. Poisson Measures.

(a) Standard Poisson distribution / measure is supported on {0, 1, 2, ...}. Given α > 0, let πα be
the Poisson distribution with parameter α, i.e., for all k ≥ 0,

πα({k}) = e−αα
k

k!

Equivalently, write,

πα =

∞∑
k=0

e−αα
k

k!
(δk) =

∞∑
k=0

e−αα
k

k!
(δ1)

∗k

(b) General Poisson Measure on Rd:

i. Given α > 0 and a probability measure ν on (Rd,B(Rd)),

πα,ν =
∞∑
k=0

e−αα
k

k!
ν(∗k)

Let’s try to understand this from the random variable point of view. Let {Xn} be iid
random variables on (Ω,F ,P) such that LX1 = ν. Let N be a random variable on the
same probability space independent of {Xn}, LN = πα. Define S =

∑N
i=1Xj . Hence, for

all ω ∈ Ω, S is defined point-wise as:

S(ω) =

N(ω)∑
j=1

Xj(ω). (30)
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Then, for all B ∈ B(Rd),

P (S ∈ B) =

∞∑
k=0

P (S ∈ B,N = k)

=
∞∑
k=0

P

 k∑
j=1

Xj ∈ B,N = k


=

∞∑
k=0

P

 k∑
j=1

Xj ∈ B

P (N = k)

=

∞∑
k=0

P

 k∑
j=1

Xj ∈ B

 e−αα
k

k!

=
∞∑
k=0

e−αα
k

k!
v∗k(B)

= πα,ν(B).

Note that we have a taylor expansion of the exponential, and so for every ξ ∈ Rd,

ˆπα,v(ξ) =
∞∑
k=0

e−αα
k

k!
(v̂(ξ))k = e−αeαv̂(ξ) = eα(v̂(ξ)−1).

This shows that πα,ν ∈ I(Rd) and for all n ≥ 1,

(πa,ν)1/n = eα/n(v̂(ξ)−1) = πα/n,v.

Notation. Given α > 0, probability measure v on Rd,

π̂α,v(ξ) = exp(α(v̂(ξ)− 1)) = exp

(
α

∫
Rd

(ei(x,ξ) − 1)ν(dx)

)
Set M := αν, M(Rd) = α. Set πM := πα,ν , i.e.,

π̂M (ξ) = exp

(∫
Rd

(ei(x,ξ) − 1)M(dx)

)
.

Further, M({0}) does not affect πM , so WLOG we assume that M({0}) = 0. Set

M0(Rd) := {M | M is a finite Borel measure on (Rd,B(Rd)) such that M({0}) = 0}. (31)

Remarks.

1. Given α > 0, a probability measure ν, set α̃ = α(1− ν({0})). Set µ̃ to be a set function such that
for all B ∈ B(Rd):

ṽ(B) :=
ν(B \ {0})
1− ν({0})

Then, ṽ is a probability measure and µ̃({0}) = 0. For all ξ ∈ Rd,

π̂α,ν(ξ) = exp

(
α

∫
Rd

(
ei(x,ξ) − 1ν(dx)

))
= exp

(
α̃

∫
Rd

(
ei(x,ξ) − 1

)
ν̃(dx)

)
= π̂α̃,ν̃(ξ).
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WLOG, we can assume, whenever necessary, that ν({0}) = 0. Set M := αν and assume that M is
a finite measure on (Rd,B(Rd)) with M({0}) = 0. Define the following two spaces:

M0(Rd) := {M | finite measureM({0}) = 0}
P(Rd) := {πM | M ∈ M0(Rd)}

2. Gaussian measures can be obtained through weak convergence from Poisson measures. We can see
this in the following proposition.

Proposition 6. Given m⃗ ∈ Rd, C = (Cij)d×d ≥ 0, there exists a sequence {αn | n ≥ 1} ⊆]0,∞[
and probability measures {νn | n ≥ 1} on Rd such that

παn,νn ⇒ γm,C . (32)

Proof. We will only prove it for d = 1. Given m ∈ R, σ2 > 0, set αn = 2n. Then, set the sequence
of measures to be:

νn =
1

2

[
δm

n
+

1

2

(
δσ/

√
n + δ −σ/

√
n

)]
(33)

for all n ≥ 1. Now write down the characteristic function: for all ξ ∈ R,

π̂αn,νn(ξ) = exp(2n(ν̂n − 1))

= exp

(
n

(
ei

m
n
ξ + cos

(
ξ√
n
σ

)
− 2

))
= exp

(
n
(
eiξ

m
n − 1

))
· exp

(
n

(
cos

(
ξ√
n
− 1

)))
→ exp (iξm) · exp

(
−1

2
ξ2
)

= γ̂m,σ2(ξ) when we send n→ ∞.

Exercise. Prove the statement in Rd.

The next theorem tells us that out of Gaussian measures and exponential measures, the Poisson family
is more fundamental.

Theorem 11. I(Rd) = P(Rd).

First, we’ll need some technical lemmas.

Lemma 5 (Facts about C-valued functions.). Given R > 0, let f be a complex-valued function that is
continuous on B(0, R), i.e., f ∈ C(B(0, R);C) and further assume that f(0) = 1. Further, assume that
f ̸= 0 on B(0, R), and fn → f uniformly on B(0, R) for some function f ∈ C(B(0, R);C) with f(0) = 1
and f ̸= 0 on B(0, R). Then, there exists a unique function ℓf ∈ C(B(0, R);C) such that

eℓf = f on B(0, R) and ℓf (0) = 0.

We refer to ℓf as the principle log of f . Moreover, if {fn} ⊆ C(B(0, R);C) such that fn(0) = 1 and

fn ̸= 0 on B(0, R). Then, if ℓfn n ≥ 1 and ℓf are the principal logs of fn and f , respectively, then

ℓfn → ℓf uniformly on B(0, R).
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Lemma 6. Given r, T ∈]0,∞[ with r < T , there exists an N = Nr,T ∈ N such that if µ ∈ I(Rd) such that

|1− µ̂(ξ)| ≤ 1

2
∀ξ ∈ B(0, r),

then inf
ξ∈B(0,T )

|µ̂(ξ)| > 2−N . Informally, this Lemma is telling us that we can use the value of µ̂ near

zero to give a lower bound

Proof. Given 0 < r < T <∞, let N be sufficiently large. Assume that µ ∈ I(Rd). We have:(
µ̂ 1

n

)n
= µ̂.

Further assume that |1− µ̂(ξ)| ≤ 1
2 for all ξ ∈ B(0, r).

• Then, µ̂(ξ) ̸= 0 and hence µ̂ 1
N
(ξ) ̸= 0 for all ξ ∈ B(0, r).

• by Lemma 1, there exists a unique principal log ℓµ̂ and a unique ℓµ̂ 1
N

on B(0, r) and ℓµ̂ = Nℓµ̂ 1
N

.

Observe:

1. On one hand, ξ ∈ B(0, r) and so

|1− µ̂(ξ)| ≤ 1

2
⇒ |ℓµ̂(ξ)| ≤ 2 ⇒

∣∣∣∣ℓµ̂ 1
N

(ξ)

∣∣∣∣ ≤ 2

N
∀ξ ∈ B(0, r).

2. On the other hand, for all ξ ∈ Rd, Re(ℓµ̂ 1
N

) = 1
NRe(ℓµ̂(ξ)).

⇒ Re(ℓµ̂ 1
N

(ξ)) =
1

N
ln |µ̂(ξ)| ≤ 1

N
ln(1) = 0

⇒ |1− ℓµ̂ 1
N

(ξ)| ≤ |µ̂ 1
N
(ξ)| ≤ 2

N
∀ξ ∈ B(0, r).

Where the first inequality in the line above follows from the fact that if Re(z) ≤ 0, then |1−ez| ≤ |z|.

Now we use the technical estimates from Lecture 5. For all unit vectors e⃗ ∈ Rd, for all R > 0,

µ 1
N
({x ∈ Rd | |(x, e⃗) > R}) ≤ 1

m(rR)
· 1
r

∫ r

0
|1− µ̂ 1

N
(se⃗)|ds

≤ 2

N

1

m(rR)
.

Next, for all 0 < r̃ < T ,

|1− µ̂ 1
N
(r̃e⃗)| ≤ r̃R+ 2µ 1

N
({x ∈ Rd | |(x, e⃗)| > R})

≤ TR+
4

N

1

m(rR)
(by the estimate above)

= TR+
4

Nm(rR)
.

We first choose R such that TR < 1
4 , and then N sufficiently large such that 4

N
1

m(rR) ≤ 1
4 . Therefore,

we’ve proven that for every ξ ∈ B(0, T ), |1− µ̂ 1
N
| ≤ 1

2 whenever N is sufficiently large. Hence, |µ̂ 1
N
| ≥ 1

2 ,

which yields the desired conclusion:

|µ̂(ξ)| = |µ̂ 1
N
(ξ)|N ≥ 2−N .
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Corrolary 3. If µ ∈ I(Rd), then µ̂(ξ) ̸= 0 for all ξ ∈ Rd.

Proof. For such a µ, there exists an r > 0 such that |1 − µ̂(ξ)| ≤ 1
2 for all ξ ∈ B(0, r), and for all

T > r > 0, there exists an N ∈ N such that |µ̂(ξ)| ≥ 2−N for all ξ ∈ B(0, T ). Therefore, there exists a
unique ℓµ̂ ∈ C(Rd;C) such that µ̂ = eℓµ̂ .

Furthermore, for every n ≥ 1, µ̂ 1
N
(ξ) ̸= 0 for all ξ ∈ Rd. Hence, there exists one ℓµ̂ 1

N

which is uniquely

the principle log of µ̂ 1
N
. This yields two important relations:

1. Due to the uniqueness of the principle log: µ̂ 1
N

= 1
N ℓµ̂.

2. (1) implies

µ̂ 1
N
(ξ) = exp

(
1

N
ℓµ̂(ξ)

)
∀ξ ∈ Rd.

Hence,

1. the root µ 1
n
is unique for all n ≥ 1.

2. µ 1
n
∈ I(Rd) for all n ≥ 1. For every m ≥ 1,(

µ̂ 1
nm

)m
= exp

( m
nm

ℓµ̂

)
= µ̂ 1

n

Proposition 7. If {µk | k ≥ 1} ⊆ I(Rd) such that {µk} ⇒ µ (as k → ∞) for some probability measure
µ on (Rd,B(Rd)), then µ ∈ I(Rd) and hence I(Rd) is closed under taking weak convergence limits.
Furthermore, for every n ≥ 1, (µk) 1

n
⇒ µ 1

n
as k → ∞.

Proof. Since µk ⇒ µ, we know that µ̂k ⇒ µ̂ uniformly on compact sets. Hence, there exists an r > 0
positive such that ∀ ξ ∈ B(0, r),

|1− µ̂k(ξ)| ≤
1

2
∀ k ≥ 1

|1− µ̂(ξ)| ≤ 1

2
.

By the 2nd technical lemma, for all T > r > 0, there exists an N = NT,r such that for all ξ ∈ B(0, T )
such that for all k ≥ 1,

|µ̂k(ξ)| > 2−N . (34)

Since µ̂k ⇒ µ̂, we also have that |µ̂(ξ)| ≥ 2−N . Since T is chosen arbitrarily,

µ̂(ξ) ̸= 0 ∀ ξ ∈ Rd.

Hence, there exists a unique principal log ℓµ̂. So, for every k ≥ 1, let ℓµ̂k
be the principal log of µ̂k. Then,

ℓµ̂k
⇒ ℓµ̂ uniformly on compact sets (as k → ∞). Therefore, for every n ≥ 1,

ˆ(µk) 1
n
= exp

(
1

n
ℓµ̂k

)
→ exp

(
1

n
ℓµ̂

)
(uniformly on compact sets).

By (Levy’s continuity theorem) , there exists a probability measure ν(n) such that (µk) 1
n
⇒ ν(n) as

k → ∞ and

ν̂(n) = exp

(
1

n
ℓµ

)
.

Obviously,

(ν̂(n))
(n) = µ̂⇒ µ ∈ I(Rd) and µ 1

n
= ν(n),

i.e., (µk) 1
n
⇒ µ 1

n
as k → ∞.
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Corrolary 4 (Closure under weak convergence). P(Rd) ⊆ I(Rd).

Proposition 8. I(Rd) ⊆ P(Rd) i.e., for all µ ∈ I(Rd), there exists an {Mn | n ≥ 1} ⊆ M0(Rd) such that
µMn ⇒ µ as n→ ∞.

Proof. For every µ ∈ I(Rd), let µ 1
n
be the “nth root” of µ for n ≥ 1. Set Mn to be the finite measure on

Rd such that for all B ∈ B(Rd),

Mn(B) = n · µ 1
n
(B \ {0}).

Clearly, Mn ∈ M0(Rd) ⇒ πMn ∈ Rd for all n ≥ 1. For all ξ ∈ Rd,

π̂Mn(ξ) = exp

(∫
Rd

(ei(x,ξ) − 1)Mn(dx)

)
= exp

(
n

∫
Rd

(ei(x,ξ) − 1)µ 1
n
(dx)

)
(by definition of Mn.)

= exp
(
n(µ̂ 1

n
(ξ)− 1)

)
= exp

(
n(e

1
n
ℓµ̂(ξ) − 1)

)
→ eℓµ̂(ξ) = µ̂(ξ) (as n→ ∞).

Hence, πMn ⇒ µ.

So the next theorem just follows.

Theorem 12. P(Rd) = I(Rd).

The next theorem gives us an explicit characterization of members in the family I(Rd). We will start
with the two classical families: Gaussian and Poisson

Theorem 13 (Levy-Khintchine Formula). Given m⃗ ∈ Rd, C = (Cij)d×d ≥ 0, M ∈ M0(Rd). If µ = γm,C ,
ν = πM , then

µ ∗ v ∈ I(Rd) and (µ ∗ ν) 1
n
= µ 1

n
∗ ν 1

n
.

We denote by π
(1)
m,C,M the measure µ ∗ ν, i.e, for all ξ ∈ Rd, π̂

(1)
m,C,M = exp

(
ℓ
(1)
m,C,M (ξ)

)
, where

ℓ
(1)
m,C,M (ξ) = i(m, ξ)− 1

2
(ξ, Cξ) +

∫
Rd

(ei(x,ξ) − 1)M(dx), (35)

where the first two terms come from the Gaussian, and the final term comes from the Poisson.

Goal: expand the family of all such measures π̂
(1)
m,C,M by weak convergence. The only parameter we

can only really expand is M . First, we will set the notation up.

Notation. We denote by Mα(Rd) the family of σ-finite measures M on (Rd,B(Rd)) such that:

M({0}) = 0 and

∫
Rd

(|y|α ∧ 1)M(dy) <∞.

This notation in the integrand compactly means∫
B(0,1)

|y|αM(dy) <∞ and

∫
B(0,1)c

M(dy) <∞
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e.g. if M(dy) =
(

1
|y|

)ρ
dy on B(0, 1) \ {0}, then we require ρ < α+d to remain integrable. Also note that

if 0 < α1 < α2, then Mα1(Rd) ⊆ Mα2(Rd). Now, let’s expand the family of π
(1)
m,C,M :

Step 1: Set α = 1. Take M ∈ M1(Rd). For every r > 0, set

Mr(dy) = χ
(B(0,r)

c
)
(y)M(dy). (36)

We have that Mr ∈ M0(Rd). Then, given any m⃗ ∈ Rd, for all C = (Cij)d×d ≥ 0, π
(1)
m,C,Mr

∈ I(Rd), with

for all ξ ∈ Rd,

π
(1)
m,C,Mr

(ξ) = exp

[
i(m, ξ)− 1

2
(ξ,Xξ) +

∫
Rd\B(0,r)

(ei(y,ξ) − 1)M(dy)

]
. (37)

We want to take r → 0; to do so, we want to use (DOM) . TO justify this,∣∣∣ei(ξ,y) − 1
∣∣∣χB(0,r)

c ≤ 2χ
B(0,1)

c + χ
B(0,1

|ξ||y| ∈ L1(M(dy)),

because M ∈ M1(Rd). By (DOM) , as r ↓ 0,

→ exp

[
i(m, ξ)− 1

2
(ξ, Cξ) +

∫
Rd

(ei(y,ξ) − 1)M(dy)

]
(38)

So set

(M1) := exp

[
i(m, ξ)− 1

2
(ξ, Cξ) +

∫
Rd

(ei(y,ξ) − 1)M(dy)

]
(39)

By (Levy’s Continuity Theorem) , π
(1)
m,C,Mr

weakly converges as → 0 to a limit measure, which we

will denote by π
(1)
m,C,M . Hence, π

(1)
m,C,Mr

∈ I(Rd) for every m⃗ ∈ Rd, C = (Cij) ≥ 0, M ∈ M1(Rd) where
ˆ

π
(1)
m,C,Mr

is given by (M1). Hence, we have expanded the family of π
(1)
m,C,Mr

fromM ∈ M0(Rd) to M1(Rd).

Step 2: Set α = 2. Take M ∈ M2(Rd). For r > 0, consider Mr(dy) the same as above. For all
ξ ∈ Rd, define:

ℓm,C,Mr(ξ) := i(m, ξ)− 1

2
(ξ, Cξ) +

∫
Rd

[
ei(y,ξ) − 1− i(ξ, y)χB(0,1)(y)

]
Mr(dy)

= i(m, ξ)− 1

2
(ξ, Cξ) +

∫
Rd\B(0,r)

[
ei(y,ξ) − 1− i(ξ, y)χB(0,1)(y)

]
M(dy)

= i

m−
∫
Rd\B(0,r)

yM(dy)︸ ︷︷ ︸
:=mr

, ξ

− 1

2
(ξ, Cξ) +

∫
Rd

[ei(y,ξ) − 1]Mr(dy)

= ℓ
(1)
mr,C,Mr

(ξ).

This implies that eℓm,C,Mr = eℓr,C,Mr (ξ) = π̂
(1)
mr,C,Mr

(ξ). Now send r → 0 in the original expression. Then,
by (DOM) ,

lim
r↓0

∫
Rd\B(0,r)

[ei(ξ,y) − 1− i(ξ, y)χB(0,1)(y)]M(dy) =

∫
Rd

[ei(ξ,y) − 1− i(ξ, y)χB(0,1)(y)]M(dy). (40)
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Therefore,

lim
r→0

π̂
(1)
m,C,Mr

(ξ) = lim
r→0

exp(ℓ
(1)
mr,C,Mr

(ξ))

= lim
r↓0

exp(ℓ
(1)
m,C,Mr

(ξ))

= exp (ℓm,C,M (ξ)) ,

where

ℓm,C,M (ξ) = i(m, ξ)− 1

2
(ξ, Cξ)−

∫
Rd

[ei(x,ξ) − 1− i(ξ, y)χB(0,1)(y)]M(dy) := (M2)

(Levy’s Continuity Theorem) implies that as r ↓ 0, π
(1)
m,C,Mr

converges weakly to a limiting measure,

denoted by πm,C,M . Hence, πm,C,M ∈ I(Rd) and π̂m,C,M = exp(ℓm,C,M (ξ)) for all ξ ∈ Rd.

Definition 8 (Levy System / Canonical Representation). Given m⃗ ∈ Rd, C = (Cij)d×d ≥ 0, M ∈
M2(Rd), the triple (m,C,M) is called a Levy System. eℓm,C,M where ℓm,C,M is as in (M2) is called
the Canonical Representation of π̂m,C,M .

Theorem 14 (Levy Khinchine Formula). Given µ ∈ I(Rd), there exists a Levy System (mµ, Cµ,Mµ)
such that µ = πmµ,Cµ,Mµ.

Proof. Task.

Example 2 (Cauchy Distribution on R). For the Cauchy Distribution, µ is the probability measure on
R with density 1

π(1+x2)
. One ca check that for every ξ ∈ R,

µ̂(ξ) =

∫
R

eixξ

π(1 + x2)
dx = e−|ξ|. (41)

For all ≥ 1,

µ̂(ξ) = e−|ξ| =
(
e−|

ξ
n |
)n
.

If ν(n) is the distribution of x ∈ R 7→ 1
nx under distribution µ. In terms of random variables, if X is a

Cauchy random variable, i.e., LX = µ and Yn := 1
nX, then ν(n) = LYn . For all ξ ∈ R,

ν(n)(ξ) =

∫
R
eixξν(n)(dx)

=

∫
R
ei

1
n
xξµ(dx)

= µ̂

(
ξ

n

)
= e−|

ξ
n |

And hence, ( ˆν(n))
n = µ̂ and µ 1

n
= ν(n). So, by (LK-Formula) , should be able to find a Levy System.

However, from here it’s totally not obvious – we will need to fit it into a canonical representation.

Definition 9. Given α > 0, a probability measure µ on (Rd,B(Rd)) is called an α-stable law if there
exists a unique principle log ℓµ̂ of µ̂ such that for all ξ ∈ Rd, for all t > 0,

ℓµ̂(tξ) = tαℓµ̂(ξ). (42)
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Remark.

1. Cauchy distribution one-dimensional is a 1-stable law.

(a) Centred Gaussian measure are 2-stable Laws.

2. If µ is an α-stable law, then µ ∈ I(Rd) and µ 1
n
is the distribution of x 7→

(
1
n

)1/α
x under µ.

3. Given µ ∈ I(Rd) with Levy System (mµ, Cµ,Mµ), then for every t > 0,

tℓµ̂ = tℓmµ,Cµ,Mµ = ℓtmµ,tCµ,tMµ . (43)

Hence, there exists a µt ∈ I(Rd) such that µ̂t = exp
(
ℓtmµ,tCµ,tMµ

)
. Therefore, µ is an α-stable law

⇐⇒ µ ∈ I(Rd) \ {δ0} such that for all t > 0, for all φ ∈ Cb(Rd),

µt(φ) = µ(φt) where φt(x) = φ(t
1
αx) ∀x ∈ Rd,

i.e., µt is the distribution of x 7→ t
1
αx under µ.

Lemma 7. If m ∈ M2(Rd), then,

lim
|ξ|→0

1

|ξ|2

∫
Rd

[ei(y,ξ) − 1− i(ξ, y)χB(0,1)(y)]M(dy) = 0. (44)

In particular, if µ ∈ I(Rd) with Levy System (mµ, Cµ,Mµ), then for all ξ ∈ Rd,

(ξ, Cξ) = −2 lim
t→∞

ℓµ̂(tξ)

t2
.

Proof. We re-write the first integral in the first statement as:

1

|ξ|2

∫
B(0,r)

[...]M(dy)︸ ︷︷ ︸
(L)

+
1

|ξ|2

∫
R\B(0,r)

[...]M(dy)︸ ︷︷ ︸
(R)

.

We can bound:

|(L)| ≤ 1

|ξ|2

∫
B(0,r)

|y|2|ξ|2M(dy) =

∫
B(0,r)

|y|2M(dy),

by choosing r sufficiently small, which we can do since M ∈ M2(Rd), we can make (L) arbitrarily small.

|(R)| ≤ 2 + |ξ|
|ξ|2

M(Rd \B(0, r)).

For the given r as above, we can choose |ξ| sufficiently large such that (R) is arbitrarily small. Finally,

ℓ µ̂

t2
(tξ) =

i(m, tξ)

t2
− 1

2
(ξ, Cξ) +

|ξ|2
∫
Rd [e

i(y,tξ) − 1− i(y, tξ)χB(0,1)(y)]M(dy)

t2|ξ|2
,

and so as t→ ∞, this term tends to 0− 1
2(ξ, Cξ) + 0, as desired.

Proposition 9. (α-stable laws)

1. There exists no (non-trivial, i.e., δ0) α-stable law for α > 2.
2. The only (non-trivial) 2-stable law on (Rd,B(Rd)) is a centre Gaussian γ0,C for C = (Cij) ≥ 0.
3. If µ is an α-stable law with α ∈]0, 2[, then Cµ = 0.
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Proof. For all ξ ∈ Rd, for all t ≥ 0,

ℓµ̂(ξ) = t−αℓµ̂(tξ)

= t−α

[
i(mµ, tξ)−

1

2
(tξ, Cµtξ) +

∫
Rd

(
ei(y,tξ) − 1− χB(0,1)(y)i(y, ξ)

)
+Mµ(dy)

]
︸ ︷︷ ︸

:=(△)

When α > 2, as t→ ∞, limt→∞ t−α(△) = 0 for every ξ.

⇒ ℓµ̂(ξ) = 0 ∀ ξ ∈ Rd

⇒ µ = δ0 (trivial case).

When α = 2, then

ℓµ̂(ξ) = lim
t→∞

(△)

tα
=

1

2
(ξ, Cµξ)

⇒ µ = γ0,C

When α ∈]0, 2[, for all t > 0,

lim
|ξ|→∞

ℓµ̂(ξ)

|ξ|2
= lim

|ξ|→∞

t−α(△)t2

t2|ξ|2

= lim
|ξ|→∞

t2−α(△)

t2|ξ|2

= lim
|ξ|→∞

t2−αℓµ̂(tξ)

t2|ξ|2

= lim
|η|→∞

t2−α ℓµ̂(η)

|η|2
.

This is only possible if lim|ξ|→∞
ℓµ̂(ξ)

|ξ|2 = 0 i.e., Cµ = 0.

Homework Problem. prove that for every α ∈]0, 2[, f(ξ) = e−|ξ|α is the characteristic function of an
α-stable law, i.e., there exists a µ α-stable law such that µ̂ = f . Find out the Levy System (mµ, Cµ,Mµ)
for this µ ∈ I(Rd).

2.2 Levy Processes

We will start discussing continuous-time stochastic processes. We will first set up the notation that we
need.

(Rd)[0,∞[ := {f : [0,∞[→ Rd}
= collection of all Rd-valued functions defined on [0,∞[

For all t ≥ 0, we define the coordinate map or the projection map:

Tt : (Rd)[0,∞[ → Rd

Tt(f) := f(t).

Then, we can define the σ-algebra generated by all the projection maps:

Σ
[0,∞[

Rd := σ({Tt | t ≥ 0}).

So, Σ
[0,∞[

Rd is the smallest σ-algebra such that Tt is measurable for all t ≥ 0.
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Definition 10 (Stochastic Process). Given a probability space (Ω,F ,P), a family of Rd-valued functions
{Xt | g ≥ 0} is called a stochastic process if the mapping

X : ω ∈ Ω 7→ X·(ω) ∈ (Rd)[0,∞[, (45)

is measurable with respect to Σ
[0,∞[

Rd . Here, X·(ω) denotes a path:

X·(ω) = {Xt | t ≥ 0}. (46)

We often say that “X is a stochastic process” or “X is an (Rd)[0,∞[-valued random variable” or equivalently,
for all t ≥ 0, ω ∈ Ω 7→ Tt ·X·(ω) = Xt(ω) ∈ Rd is an Rd-valued random variable.

Definition 11. Let X be a stochastic processes on (Ω,F ,P). The distribution of X is a probability

measure LX on ((Rd)[0,∞[,Σ
[0,∞[

Rd ), given by: for all B ∈ Σ
[0,∞[

Rd ,

LX(B) := P (X ∈ B)

= P ({ω ∈ Ω | X·(ω) ∈ B}) .

For example, one could define:

B := {f : [0,+∞] → Rd | f(1) ∈ B(0, 1)}
B := {f : [0,+∞] → Rd | |f(1/2)| > |f(1)|}.

Proposition 10. Let X and Y be two (Rd)[0,∞[-valued stochastic processes on (Ω,F ,P). Then, X and
Y have the same distribution if for all p ∈ N, for all 0 ≤ t1 < t2 < ... < tp < ∞, for all Bj ∈ B(Rd),
j = 1, ..., p:

P

 p⋂
j=1

{Xtj ∈ Bj}

 = P

 p⋂
j=1

{Ytj ∈ Bj}

 . (47)

This is true because {
⋂p

j=1 T
−1
tj

(Bj) | p ∈ N, 0 ≤ t1 < ... < tp < ∞, B1, ..., Bp ∈ B(Rd)} is a generating

π-system of Σ
[0,∞[

Rd .

Definition 12 (Indistinguishible / Modification). Let X and Y be two stochastic processes on (Ω,F ,P).

• We say that X and Y are indistinguishible if

P (X = Y ) = 1. (48)

• We say that X is a modification of Y if for all t ≥ 0,

P (Xt = Yt) = 1. (49)

Note that indistingushible ⇒ modification ⇒ having the same distribution, but the converse doesn’t
follow in general.

Definition 13 (RCLL Function). We denote by D([0,∞[;Rd) =: D([0,∞[) the collection of all the
Rd-valued functions f on [0,∞[ such that:

1. for all t ≥ 0, f is continuous from the right:

f(t+) = lim
s→t

f(s) = f(t). (50)
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2. the left-handed limit exists: for all t ≥ 0,

f(t−) = lim
s→t−

f(s) exists in Rd.

i.e., f is a RCLL Function.

We have a few facts about RCLL Functions.

1. (Boundedness). For all t ≥ 0,

||f ||U,[0,t] := sup
s∈[0,t]

|f(s)| <∞

||f ||n,[0,t] := lim
n→∞

max
m∈{0,1,...,2n}

|f(m2−mt)|

2. (Total Variation). it’s bounded:

||f ||var,[0,t] := sup


p∑

j=1

|f(tj)− f(tj−1)| | p ∈ N, 0 = t0 < t1 < ... < tp = t

 <∞

||f ||var,[0,t] := lim
n→∞

2n∑
m=1

|f(m2−nt)− f((m− 1)2−nt)|.

3. (Discontinuity Points). For all t ≥ 0, for all r ≥ 0, set:

J(t, r, f) := {s ∈]0, t] | |f(s)− f(s−)| ≥ r}. (51)

(This set is collecting all the discontinuity points where the jump size is at least r). Then, J(t, r, f)
is a finite set for all r > 0, and hence

J(t, f) := {s ∈]0, t] | f(s) ̸= f(s−)}, (52)

i.e., the set of all discontinuity points, is at most countable.

Hence, for all t ≥ 0, we can define a set function on B(Rd) as follows: for all Borel sets B ∈ B(Rd),

j(t, B, f) :=
∑

s∈J(t,f)

χB(f(s)− f(s−)). (53)

In words, j(t, B, f) is the number of jumps such that the amount of jump is in B. Equivalently,

j(t, ·, f) :=
∑

s∈J(t,f)

δf(s)−f(s−).

It’s easy to check that j(t, ·, f) is a measure on (Rd,B(Rd)) (check that it satisfies countable additivity).
And, j(t, {0}, f) = 0. Further, for every r > 0, j(t,Rd \ B(0, r), f) = J(t, r, f) < ∞. Hence, this implies
that

j(t, ·, f) ∈ M∞(Rd) :={M | σ − finite measure on (Rd,B(Rd))

such that M({0}) = 0 and M(Rd \B(0, r)) <∞ ∀r > 0}.

(Recall the ordering we have on these families: M0(Rd) ⊆ M1(Rd) ⊆ M2(Rd) ⊆ M∞(Rd), whereMi(Rd)
allows for ith order singularities). We call j(t, ·, f) the jump measure corresponding to f by time t.



Math 589: Advanced Probability II Winter 2022 Page 33

Given a φ : Rd → C, φ a Borel function that vanishes near zero φ|B(0,r) ≡ 0 for some r > 0. Then,
φ ∈ L1(j(t, ·, f)) ∫

Rd

φ(y)j(t, dy, f) =
∑

s∈J(t,r,f)

φ(f(s)− f(s−)).

If in addition we assume that φ ∈ Cb(Rd;C), then we can re-write the above as:∫
Rd

φ(y)j(t, dy, f) = lim
n→∞

2n∑
m=1

φ(f(m2−nf)− f((m− 1)2−nt)).

Furthermore, t ∈]0,∞[7→
∫
Rd φ(y)j(t, dy, f) is right continuous and piece-wise constant. To see this, we

notice that for every t > 0, since f is right-continuous, there exists a ε > 0 such that for all s, s′ ∈ [t, t+ε],
by the triangle inequality:

|f(s)− f(s′)| ≤ |f(s)− f(t)|+ |f(s′)− f(t)| < r/2.

This implies that there is no discontinuity in [t, t + ε] that has jump size at least r. Hence, j(t, r, f) =
j(t+ ε, r, f) and ∫

Rd

φ(y)j(t, dy, f) =

∫
Rd

φ(y)j(t+ ε, dy, f).

Definition 14. Also a Proposition. Set Σd to be the σ-algebra of subsets of D([0,∞[) generated by all
the projection maps {Tt | g ≥ 0}. Then, for all t ≥ 0,

|| · ||U,[0,t] : f ∈ D([0,∞[) 7→ ||f ||U,[0,t] is ΣD-measurable.

|| · ||var,[0,t] : f ∈ D([0,∞[) 7→ ||f ||var,[0,t] is ΣD-measurable.

For all φ ∈ C0(Rd) such that φ vanishes near zero,

f ∈ D([0,∞[) 7→
∫
Rd

φ(y)j(t, dy, f) is ΣD-measurable.

In particular,

{f ∈ D([0,∞[ | f is continuous on [0,∞[} ∈ ΣD.

Definition 15 (Levy Process). Let X = {Xt | t ≥ 0} be a Stochastic process on (Ω,F ,P) such that for
all ω ∈ Ω, X·(ω) ∈ D([0,∞]) (the sample path of X· is RCLL). X is called a Levy Process if X has
independent and homogeneous increments, i.e., for all 0 ≤ s < t, the increment Xt −Xs is independent
of {Xr | 0 ≤ r ≤ s} and LXt−Xs only depends on t− s (homogeneous).

Remark. Given a Levy process X = {Xt | t ≥ 0} set µ = LX1 (by convention, set X0 ≡ 0). Claim:
µ ∈ I(Rd). To see this, for every n ≥ 1, we may write:

X1 =
n∑

j=1

(
X j

n
−X j−1

n

)
. (54)

We have that the set {
X j

n
−X j−1

n
| j = 1, ..., n

}
(55)
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is iid and have distribution LX 1
n

. Hence, this implies that(
ˆLX 1

n

)n
= µ̂⇒ µ ∈ I(Rd) with µ 1

n
= LX 1

n

,

(by being homogeneous). For every q ∈ Q, write q = m
n for m,n ∈ N. Then,

ˆLXq =
(

ˆLX 1
n

)m
= e

m
n
ℓµ̂ ⇒ LXq = µq.

For t > 0, choose {qk | k ≥ 1} ⊆ Q+ such that qk → t+ as k → ∞. Then, for all ξ ∈ Rd,

E
[
ei(ξ,Xt)

]
= lim

k→∞
E
[
ei(ξ,Xqk

]
(by (DOM) , (RCLL) ).

= lim
k→∞

eqkℓµ̂(ξ)

= etℓµ̂(ξ)

= µ̂t(ξ).

Hence, for all t ≥ 0, LXt = µt, where µ = LX1 . And further, for all 0 < s < t, LXt−Xs = µt−s.

Definition 16 (Levy Process Associated with a Measure). We say thatX is a Levy Process Associated
with µ ∈ I(Rd) if

1. X is a Levy process.
2. for all 0 ≤ s < t,

LXt−Xs = µt−s. (56)

The next goal is: we want to, given a µ, construct a Levy Process X associated with µ.

Step # 0: Given α > 0, let πα be the Poisson distribution with parameter α > 0. We will con-
struct X for this distribution. Let {θn} be iid exponential random variables with parameter α > 0, i.e.,
the density function is χ]0,∞[(x)αe

−αx.WLOG, we assume that T0 ≡ 0 for all n ≥ 1, and set

Tn :=
n∑

m=1

θm. (57)

Here, Tn represents the total waiting time by the nth occurence, and θm is the waiting time. Tn has a
gamma distribution: it’s density is

χ]0,∞[(x)
αn

(n− 1)!
xn−1e−αx.

Set N0 ≡ 0 and for all t ≥ 0, for all ω ∈ Ω, define

Nt(ω) := max {n ≥ 1 | Tn(ω) ≤ t} . (58)

This Nt(ω) counts how many events occurred by time t. Equivalently,

{Nt = 0} = {T1 > t} = {θ1 > t}.

For all n ≥ 1,

{Nt = n} = {Tn ≤ t, Tn+1 > t}. (59)
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This implies that,

P (Nt = 0) = P (θ1 > t) = e−αt ⇒ ∀n ≥ 1,P (Nt = n) = P (Tn ≤ t)− P (Tn+1 ≤ t)

=

∫ t

0

αn

(n− 1)!
xn−1e−αxdx−

∫ t

0

αn+1

n!
xne−αxdx

=
(αt)n

n!
e−αt.

This shows that LNt = παt, i.e., Nt is a Poisson random variable with parameter αt.

Remark. for all ω ∈ Ω, t ∈ [0,∞[ 7→ Nt(ω) ∈ N is non-decreasing, piece-wise constant, and right-
continuous:

N0(ω) = {Nt(ω) | t ≥ 0} is RCLL.

To see this, e.g.,

{Nt = n,Nt+ε ≥ n+ 1} ⊆ {Tn ≤ t, t < Tn+1 ≤ t+ ε}.

As ε→ 0, the limit of such a set is ∅. In addition, for all t > 0, Nt −Nt− ∈ {0, 1}.

Proposition 11. N : ω ∈ Ω 7→ N(ω) ∈ D([0,∞[;N) as a stochastic process is a Levy process associated
with πα.

Proof. It’s sufficient to prove that for every k ≥ 1, ∀0 = t0 < t1 < ... < tk, for all 0 = n0 ≤ n1 ≤ n2 ≤
... ≤ nk ∈ N,

P

 k⋂
j=1

{Ntj = nj}

 = P

 k⋂
j=1

{Ntj −Ntj−1 = nj − nj−1}


=

k∏
j=1

(α(tj − tj−1))
nj−nj−1

(nj − nj−1)!
e−α(tj−tj−1)

We write the LHS as:

P

 k⋂
j=1

{Tnj ≤ tj ≤ T1+nj}

 .

The event concerns {θ1, θ2, ..., θ1+nj} which has the joint density function of

α1+nke−α
∑nk+1

j=1 Xjdx1dx2...dxnk+1.

Hence,

LHS =

∫
A
α1+nke−α(x1+...+x1+nk

)dx1...dx1+nk
,

where A = {
∑nj

m=1 xm ≤ tj <
∑1+nj

m=1 xm ∀1 ≤ j ≤ k}. Under the change of variables, u =
∑
xi, this

yields,

= eαtkαnkVol(B),
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where Vol(B) = {tk ≥
∑nk

m=1 xm ≥ ... ≥
∑1+nk−1

m=1 xm > tk−1 ≥ ...}. Hence, this becomes:

= e−αtkαnk

k∏
j=1

(tj − tj−1)
nj−nj−1

(nj − nj−1)!

=
k∏

j=1

(α(tj − tj−1))
nj−nj−1

(nj − nj−1)!
e−α(tj−tj−1),

which is the probability function of πα(tj−tj−1).

Definition 17 (Simple Poisson Jump Process). We also call N = {Nt | t ≥ 0} the simple Poisson
jump process associated with πα.

Now we are ready to move onto the next step.

Step # 1: given M ∈ M0(Rd), construct a Levy Process X = {Xt | t > 0}.

Write M = αν, where α =M(Rd) and ν a probability measure. Let {θm | m ≥ 1} and N = {Nt | t ≥ 0}
be the same as in (Step 0) . Take {Yk | k ≥ 1} to be a sequence of iid random variables with distribution
ν defined on the same probability space as {θm |m ≥ 1} but independent of the whole family {θm |m ≥ 1}.

Set X0 ≡ 0 for all t > 0, for all ω ∈ Ω, define:

Xt(ω) =

Nt(ω)∑
k=1

Yk(ω). (60)

If Nt(ω) = 0, then by convention Xt(ω) = 0. If Nt(ω) = n ≥ 1, then

Xt(ω) =
n∑

k=1

Yk(ω).

Proposition 12. This process X = {Xt | t ≥ 0} is a Levy Process associated with πM .

Proof. We will use the fact that if Z1, ..., Zk are some Rd-valued random variables, then Z1, ..., Zk are
mutually independent ⇐⇒ for all ξ1, ..., ξk ∈ Rd:

E
[
eiξ1Z1+...+iξkZk

]
=

k∏
j=1

E
[
eiξjZj

]
.

(Note that this last condition is equivalent to saying that the joint distribution of (Z1, ..., ZK) is LZ1 ·
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LZ2 · · · LZk
). So, for all k ≥ 1, for all 0 = t0 < t1 < ... < tk, for all ξ1, ..., ξk ∈ Rd, we need to compute:

E
[
ei

∑k
j=1(Xtj−Xtj−1 ,ξj)

]
=

∑
all choices of 0 = n0 ≤ n1 ≤ ... ≤ nk

E
[
ei

∑k
j=1(Xtj−Xtj−1 ,ξj);Nt1 = n1, Nt2 = n2, ..., Ntk = nk

]
=

∑
all choices of 0 = n0 ≤ n1 ≤ ... ≤ nk

E
[
e
i
∑k

j=1

(∑nj
1+nj

Yp,ξj

)
;Ntj = nj ∀ 1 ≤ j ≤ k

]

=
∑

all choices of 0 = n0 ≤ n1 ≤ ... ≤ nk

 k∏
j=1

(v̂(ξj))
nj−nj−1

 ·

 k∏
j=1

exp (−α(tj − tj−1) · (α(tj − tj−1))
nj−nj−1)

(nj − nj−1)!


=

∑
all choices of 0 = n0 ≤ n1 ≤ ... ≤ nk

k∏
j=1

exp(−α(tj − tj−1))

(nj − nj−1)!
· (α(tj − tj−1)v̂(ξj))

nj−nj−1

=
k∏

j=1

exp(−α(tj − tj−1)) · exp (α(tj − tj−1)v̂(ξj))

=
k∏

j=1

exp(α(tj − tj−1)(v̂(ξj)− 1)

=
k∏

j=1

π̂(tj−tj−1)M (ξj).

This proves homogeneity.

Definition 18 (Compound Poisson Process). We call the process above X = Xt | t ≥ 0} a compound
Poisson Process with jump rate α and jump distribution ν.

Remarks. How do we deal with σ-finite measures? We want to consider the jump measure associated
with the sample path of X. Recall: given a function that has RCLL path in Rd φ ∈ D([0,∞[;Rd)), the
jump measure associated with φ is: ∀ t > 0, for all B ∈ B(Rd),

j(t, B, φ) :=
∑

s∈J(t,φ)

χB(φ(s)− φ(s−)).

We will consider the jump measures j(t, ·, x) (the jump measure associated with the process X = {Xt | t ≥
0}.

1. j(t, ·, X) =
∑Nt

k=1 δYk
: for all B ∈ B(Rd), j(t, B,X) =

∑Nt
k=1 χB(YK) ⇒ j(t, ·, X) is a finite measure

( j(t, ·, X) ∈ M0(Rd)): (∀ω ∈ Ω, j(t,Rd, X·(ω) = Nt(ω) is finite).
2. ∀t > 0, by definition:

Xt =

Nt∑
k=1

Yk =

∫
Rd

yj(t, dy,X).

||X·||var,[0,t] =
Nt∑
k=1

|Yk| =
∫
Rd

|y|j(t, dy,X)
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Taking the expectation yields:

E
[
||X·||var,[0,t]

]
= E

[
Nt∑
k=1

|Yk|

]
= E [Nt]E [|Y1|] (by independence)

= αt

∫
Rd

|y|v(dy)

= t

∫
Rd

|y|M(dy)

Therefore, if
∫
Rd |y|M(dy) <∞, then E [Xt] = t

∫
Rd yM(dy). Similarly,

∫
Rd |y|2M(dy) <∞, then

E
[
|Xt|2

]
= E

 Nt∑
j=1

Nt∑
k=1

(Yj , Yk)


= E [Nt]E

[
|Y1|2

]
+ E

[
N2

t −Nt

]
· |E [Y1] |2

= t

∫
Rd

|y|2M(dy) + t2
∣∣∣∣∫

Rd

yM(dy)

∣∣∣∣2
This proves that E

[
|Xt − E [Xt] |2

]
= t

∫
Rd |y|2M(dy).

3. Given Γ ∈ B(Rd), t > 0,

j(t,Γ, X) =

Nt∑
k=1

χΓ(Yk).

Consider this as a path: {j(t,Γ, X) | t ≥ 0} is non-decreasing, N-valued, and RCLL piece-wise
constant. Consider n ≥ 0:

P (j(t,Γ, X)− j(s,Γ, X) = n) =
∞∑
k=0

∞∑
l=n

P (j(t,Γ, X)− j(s,Γ, X) = n,Ns = k,Nt −Ns = l)

=
∞∑
k=0

∞∑
l=n

P (#{p | k + 1 ≤ p ≤ k + l | Yp ∈ Γ} = n)P (Ns = k)P (Nt −Ns = l)

=
∞∑
k=0

P (Ns = k) ·
∞∑
l=n

P (#{p | k + 1 ≤ p ≤ k + l | Yp ∈ Γ} = n) · P (Nt−s = l)

=
∞∑
l=n

P (j(t− s,Γ, X) = n;Nt−s = l)

= P (j(t− s,Γ, X) = n) (proves independent increments, by rmk 1)

=
∞∑
l=n

exp(−α(t− s))
(α(t− s))l

l!

(
l

n

)
(P (Yn ∈ Γ))n(1− P (Y1 ∈ Γ))l−n (rmk 2)

=
∞∑
l=n

exp(−α(t− s))
(α(t− s))l

l!

(
l

n

)
(v(Γ))n(1− v(Γ))l−n

= exp(−(t− s)M(Γ))
((t− s)M(Γ))n

n!
→ π(t−s)M(Γ) (in distribution)

Still need to prove that the increments are independent. It’s an exercise.
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Conclusion: the process {j(t,Γ, X) | t ≥ 0} is a simple Poisson process with jump rate M(Γ).

Remark. Let M ∈ M0(Rd), X = {Xt | t ≥ 0} be a Levy process associated with πM and {j(t, ·, X) | t ≥
0} be the jump measure associated with X.

If {Γm | m ≥ 1} ⊆ B(Rd) and Γm ∩ Γl = ∅ for all l ̸= m, then {{j(t,Γm, X) | t ≥ 0} | m ≥ 1} is
an independent family of stochastic process.

Proof. We will only prove independence for {j(t,Γ1, X) | t ≥ 0} and {j(s,Γ2, X) | t ≥ 0}. For all
0 ≤ s ≤ t, for all ξ1, ξ2 ∈ R:

E [exp(i(ξ1, j(t,Γ1, X)) + i(ξ2, j(s,Γ2, X)))]

= E [exp(i(ξ1, j(t,Γ1, X))− i(ξ1, j(s,Γ1, X)) · exp(i(ξ1, j(s,Γ1, X)) + i(ξ2, j(s,Γ2, X))]

= E [exp(i(ξ1, j(t,Γ1, X)− j(s,Γ1, X)))] · E [...]

= exp((t− s)M(Γ1)(e
iξ1 − 1))︸ ︷︷ ︸

:=(F )

·
∞∑

L=0

E [exp(i(ξ1, j(s,Γ1, X)) + i(ξ2, j(s,Γ2, X)));Ns = L]︸ ︷︷ ︸
:=(E)

When Ns = L, X =
∑L

k=1 Yk and j(s,Γ, X) =
∑L

k=1 χΓ1(Yk). Hence,

(E) =

∞∑
L=0

e−αs(αs)L

L!

(∫
Rd

(exp(iξ1χΓ1(y) + iξ2χΓ2(y)))v(dy)

)L

=
∞∑

L=0

e−αs(αs)L

L!

(
eiξ1v(Γ1) + eiξ2v(Γ2) + 1− v(Γ1)− v(Γ2)

)L
= e−αs · exp

(
seiξ1M(Γ1) + seiξ2M(Γ2)− αs− SM(Γ1) + SM(Γ2)

)
So,

(F ) · (E) = exp(tM(Γ1)(e
iξ1 − 1) · exp(sM(Γ2)(e

iξ2 − 1))

= E [exp(iξ1j(t,Γ1, X)] · E [exp(iξ2j(s,Γ2, X))]

Now assume that we have a sequence of mutually singular measures, {Mk | 1 ≤ k ≤ K} ⊆ M0(Rd),
i.e., there exists {Γk | 1 ≤ k ≤ K} ⊆ B(Rd), Γk ∩ Γl = ∅ if k ̸= l such that Mk(Γ

c
k) = 0 for all 1 ≤ k ≤ K

(the mass of Mk is concentrated in Γk). For each k ∈ {1, ...,K}, there exists a Levy process

X(k) = {X(k)
t | t ≥ 0}

associated with πMk
. We can take all these processes {X(k) | 1 ≤ k ≤ K} to be on the same probability

space and to be independent.

Claim. X =
∑K

k=1X
(k) is a Levy process associated with πM , where M =

∑K
k=1Mk ∈ M0(Rd).

Proof. Obviously, X = {Xt | t ≥ 0} is RCLL with independent and homogeneous increments. For all
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t ≥ 0 and for all ξ ∈ Rd,

ˆLXt(ξ) =
K∏
k=1

ˆL
X

(k)
t

(ξ)

= exp

(
K∑
k=1

t

∫
Rd

(
ei(ξ,y) − 1

)
Mk(dy)

)

= exp

(
t

∫
Rd

(
ei(ξ,y) − 1

)
M(dy)

)
.

This shows that LXt = πtM , which proves the claim.

In particular, if j(t, ·, X) is the jump measure associated with X, then:

j(t, ·, X) =

K∑
k=1

j(t, ·, X)
∣∣
Γk

=

K∑
k=1

j(t, ·, X(k)).

In words: any jump of X must be from one and only one X(k). WLOG, assume that {Γk | 1 ≤ k ≤ K}
is a partition of Rd. Now assume that M , {Mk | k ≥ 1}, and {Γk | k ≥ 1} are the same as above. Let
X = {Xt | t ≥ 0} be a Levy process associated with πM . Then, for all t > 0, for all ω ∈ Ω:

Xt(ω) =

∫
Rd

yj(t, dy,X·(ω))

=

K∑
k=1

∫
Γk

yj(t, dy,X·(ω))

=
K∑
k=1

∫
Rd

yj(k)(t, dy, ω),

where j(k)(t, ·, ω) = j(t, ·, X(ω))
∣∣
Γk
. For every 1 ≤ k ≤ K, set

X
(k)
t (ω) =

∫
Rd

yj(k)(t, dy, ω).

Claim. {X(k) | 1 ≤ k ≤ K} is independent and for every 1 ≤ k ≤ K, {X(k)
t | t ≥ 0} is a Levy process

associated with πMk
.

Proof. The X(k)′s are independent because the {j(t, ·, X)
∣∣
Γk

| 1 ≤ k ≤ K} are independent. Moreover,

for all 1 ≤ k ≤ K, {X(k)
t | t ≥ 0} is RCLL with independent and homogeneous increments. For all t ≥ 0,

for all ξ ∈ Rd,

E
[
ei(ξ,X

(k)
t )
]
=

∞∑
m=0

E
[
ei(ξ,X

(k)
t );Nt = m

]
When Nt = m, then X

(k)
t =

∑Nt
j=1 YjχΓk

(Yj). Hence,

=
∞∑

m=0

e−αt (αt)
m

m!
·
(∫

Rd

ei(ξ,y)χΓk
(y)v(dy)

)m

=
∞∑

m=0

e−αt (αt)
m

m!

(∫
Γk

ei(ξ,y)v(dy)− 1− v(Γk)

)m

= exp

(
t

∫
Rd

(
ei(ξ,y) − 1

)
Mk(dy)

)
.

Hence, L
X

(k)
t

= πtMk
.



Math 589: Advanced Probability II Winter 2022 Page 41

Lemma 8. GivenM ∈ M∞(Rd) (i.e.,M is σ-finite andM({0}) = 0 and for all r > 0,M(B(0, r)c) <∞),
there exists a mapping (t, ω) ∈ [0,∞[×Ω 7→ j(t, ·, ω) ∈ M∞(Rd) referred to as the jump measure
corresponding to M such that:

1. ∀ Γ ∈ B(Rd) such that 0 /∈ Γ, {j(t,Γ) | t ≥ 0} is a simple Poisson process with rate M(Γ).

2. For all {Γm | m ≥ 1} ⊆ B(Rd) such that Γm ∩ Γl = ∅ for all m ̸= l and 0 /∈
⋃L

m=1 Γm for all L ≥ 1.
Then,

{{j(t,Γm) | t ≥ 0} | m ≥ 1}

is an independent family of stochastic processes.

Proof. Set A0 := Rd \B(0, 1). Set Ak := B(0, 2−(k+1)) \B(0, 2−k) for all k ∈ N (we are cutting the space
into annuli, since the origin is the problematic part). For every k ≥ 0, set Mk := χAk

·M ∈ M0(Rd).

Then, there exists an X(k) = {X(k)
t | t ≥ 0} a Levy Process associated with πMk

and {X(k) | k ≥ 1} are
independent and defined on (Ω,F ,P). For all (t, ω) ∈ [0,∞[×Ω and for all Γ ∈ B(Rd),

j(t,Γ, ω) :=
∞∑
k=0

j(t,Γ, X
(k)
· (ω))

is well-defined. It’s straightforward to check that this j(t, ·, ω) is a measure on Rd (monotone convergence).
Moreover, for every r > 0, when k is sufficiently large such that 2−k+1 < r, then:

j(t, B(0, r)
c
, X(k)) = 0 ⇒ j(t, B(0, r)

c
, ω) <∞ ⇒ j(t, ·, ω) ∈ M0(Rd).

Proof of (1). Given Γ ∈ B(Rd) such that 0 /∈ Γ, there exists a k sufficiently large such that B(0, 2−k)∩Γ =
∅.

⇒ j(t,Γ, ω) =

K∑
k=1

j(t,Γ, X
(k)
· (ω)).

We have shown that RHS = j(t,Γ, X), where X =
∑K

k=1X
(k), and X is a Levy process associated with

πM(k) , where

M (k) =

K∑
k=1

Mk.

This implies that {j(t,Γ) = j(t,Γ, X) | t ≥ 0} is a simple Poisson process with rate M (k)(Γ) =M(Γ).

Proof of (2): exercise.

Step # 2: We construct a Levy Process associated with π
(1)
0,0,M for M ∈ M1(Rd) and a Levy Process

associated with π0,0,M for M ∈ M2(Rd).

Lemma 9. Given M ∈ M1(Rd), let (t, ω) ∈ [0,∞[×Ω 7→ j(t, ·, ω) be the jump measure corresponding to
M . Then, for almost every ω ∈ Ω,∫

Rd

|y|j(t, dy, ω) =: Vt(ω) <∞ for all t > 0.
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Proof. Let {Ak | k ≥ 0}, {Mk | k ≥ 0}, and {X(k) | k ≥ 0} be the same as above. For every t ≥ 0, we
write:

Vt(ω) =
∞∑
k=0

∫
Ak

|y|j(t, dy, ω)︸ ︷︷ ︸
V

(k)
t (ω)

Next, write:

Vt(ω) = V
(0)
t (ω) +

∞∑
k=1

V
(k)
t (ω).

By the previous step, we know that V
(0)
t is finite for almost every ω. Hence, it suffices to show that∑∞

k=1 V
(k)
t converges for almost every ω ∈ Ω. For all k ≥ 1, X(k) is the Levy Process associated with

πMk
. Then,

V
(k)
t = ||X(k)||var,[0,t].

⇒E
[
V

(k)
t

]
= t

∫
Ak

|y|M(dy)

⇒
∞∑
k=1

E
[
V

(k)
t

]
= t

∫
B(0,1)

|y|M(dy) <∞ since M ∈ M1(Rd).

By (MON) ,

E

[ ∞∑
k=1

V
(k)
t

]
=

∞∑
k=1

E
[
V

(k)
t

]
<∞ ⇒

∞∑
k=1

V
(k)
t converges almost surely.

This proves the Lemma.

Step # 2.1:

Theorem 15. GivenM ∈ M2(Rd), let j(t, ·, ω) be the jump measure corresponding toM . Given r ∈]0, 1[,
define:

Xr
0 ≡ 0 for all ω ∈ Ω, ∀t > 0

X
(r)
t :=

∫
Rd\B(0,r)

yj(t, dy, ω)− t

∫
B(0,1)\B(0,r)

yM(dy).

Then, for almost every ω ∈ Ω, Xt(ω) := limr↓0X
(r)
t exists for every t ≥ 0, and {Xt | t ≥ 0} is a Levy

Process associated with π0,0,M .

Proof. For every r > 0, {X(r)
t | t ≥ 0} is a Levy process associated with π0,0,M(r) , where

M (r) :=M
∣∣
B(0,1)

c .

For every 0 < r < r′ < 1, set Yt := X
(r)
t −X

(r′)
t , i.e.:

Yt =

∫
B(0,r′)\B(0,r)

yj(t, dy)−
∫
B(0,r′)\B(0,r)

yM(dy).
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Then,

||X(r) −X(r′)||U,[0,t] = ||Y ||U,[0,t]
= lim

n→∞
max

0≤m≤2n
|Ym2−nt|.

For all ε > 0,

P
(
||Y ||U,[0,t] > ε

)
= lim

n→∞
P
(

max
0≤m≤2−n

|Ym2−nt| ≥ ε

)
≤ lim

n→∞

d∑
i=1

P
(

max
0≤m≤2n

|(Ym2−nt, ej)| ≥ ε

)

= lim
n→∞

d∑
j=1

P

(
max

0≤m≤2n

∣∣∣∣∣
m∑
l=1

(
Yℓ2−nt − Y(ℓ−1)2−nt, ej

)∣∣∣∣∣ > ε√
d

)
.

The Yℓ2−nt − Y(ℓ−1)2−nt are iid random variables, and so by Kolmogorov’s Inequality,

≤ lim
n→∞

d∑
j=1

d

ε2
E
[
|(Yt, ej)|2

]
=

d

ε2
E
[
|Yt|2

]
=

d

ε2

∫
B(0,r2)\B(0,r)

|y|2M(dy).

Since M ∈ M2(Rd), we can choose a sequence {rn | n ≥ 1} such that rn ↓ 0 and

t

∫
rn≤|y|≤rn−1

|y|2M(dy) ≤ 2−n,

for every n ∈ N. This implies that

P
(
||X(rn) −X(rn−1)||U,[0,t] ≥ 2−

n
4

)
≤ dt2

n
2 2−n = dt2−

n
2 .

By (BC1) ,

P
(
||X(rn) −X(rn−1)||U,[0,t] ≥ 2−

n
4 i.o.

)
= 0.

Hence, there exists Ω′ ⊆ Ω such that P (Ω′) = 1 such that for all ω ∈ Ω′,

||X(rn) −X(rn−1)||U,[0,t](ω) ≤ 2−
n
4 for n sufficiently large. (61)

Hence, Xt(ω) := limn→∞X
(rn)
t (ω) exists. This implies that X = {Xt | t ≥ 0} is RCLL. It’s straightfor-

ward to verify that X is a Levy Process associated with π0,0,M by (Convergence of Characteristic
Functions) .

Corrolary 5. Let M ∈ M2(Rd). Let {Xt | t ≥ 0} be a Levy process associated with π0,0,M .

1. If M ∈ M1(Rd), then for almost every ω ∈ Ω, ||X||Var,[0,t] <∞ for all t > 0.

2. If M /∈ M1(Rd), then for almost every ω ∈ Ω, ||X||Var,[0,t](ω) = ∞ for all t.
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Step # 3: we construct a Levy Process {Xt | t ≥ 0} associated with π0,C,0 = γ0,C .

Remark. WLOG, we can assume that C = I (diagonal matrix). If {Bt | t ≥ 0} is a Levy Process
associated with the standard d-dimensional Gaussian measure γ0,I , then for general C = (Cij)d×d ≥ 0,
set Xt =

√
CBt.

√
C is the unique non-negative symmetric matrix such that

√
C
√
C = C. Then, for all

ξ ∈ Rd,

E
[
ei(ξ,Xt)

]
= E

[
ei(

√
Cξ,Bt)

]
= e−

t
2
(C,Cξ),

which shows that LXt = γ0,tC , which shows that {Xt| t ≥ 0} is a Levy Process associated with γ0,C .

Definition 19. If {Bt | t ≥ 0} is a Levy Process associated with the standard Gaussian γ0,I , then
B = {Bt | t ≥ 0} is a standard Brownian Motion (B.M.) in Rd. “Standard” means that B0 = 0.

First, some remarks.

1. ∀0 ≤ s ≤ t, we know that

LBt = γ0,tI

LBt−Bs = γ0,(t−s)I ,

and Bt −Bs is independent of Br for all 0 ≤ r ≤ s.

2. If Bt = (B
(1)
t , B

(2)
t , ..., B

(d)
t ), then:

(a) {B(j)
t | t ≥ 0} is a standard one-dimensional Brownian motion for all 1 ≤ j ≤ d.

(b) For all 1 ≤ j ≤ d, ∀t, s ≥ 0,

E
[
B

(j)
t B(j)

s

]
= t ∧ s. (62)

(c) For all 1 ≤ j, j′ ≤ d, j ̸= j′, {B(j)
t | t ≥ 0} and {B(j′)

t | t ≥ 0} are independent.
(d) For all t, s ≥ 0,

E [(Bt, Bs)] = (t ∧ s)d
E
[
(Bt)

2
]
= td.

3. {(Bt, ξ) | t ≥ 0, ξ ∈ Rd} is a Gaussian Family, i.e., for all k ≥ 1, for all 0 ≤ t1 ≤ ... ≤ tk, for all
ξ1, ..., ξk ∈ Rd, the joint distribution of ((Bt1 , ξ1), (Bt2 , ξ2), ..., (Btk , ξk)) is a multivariate Gaussian
distribution with expectation function:

E [(Bt, ξ)] = 0 ∀t ≥ 0,∀ξ ∈ Rd,

and covariance function for all t, s ≥ 0, for all ξ, η ∈ Rd:

E [(Bt, ξ)(Bs, η)] = (t ∧ s)(ξ, η).

Equivalently, for all k ≥ 1, for all 0 ≤ t1 ≤ ... ≤ tk, (Bt1 , Bt2 , ..., Btk) as an Rdk-valued random
variable has distribution γ0,C(t1,...,tk

where

C(t1,...,tk) =
(
tj∧j′Id×d

)
j=1,...,k, j′=1,...,k
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2.2.1 Levy’s Construction of Brownian Motion (Pathwise Construction)

The “building blocks” will be {Xn,m | n ≥ 0,m ≥ 0} defined on some probability space (Ω,F ,P) i.i.d.

random variables with distribution γ0,I . We will define a family of processes {B(n)
t | t ≥ 0} for n ≥ 0 and

prove that B
(n)
· converges to the Brownian motion.

n = 0: For n = 0, set B
(0)
0 ≡ 0 and B

(0)
m :=

∑m
l=1X0,l for m ≥ 1. Linearly interpolate [m − 1,m]

for each m, i.e., if t ∈ [m− 1,m], then

B
(0)
t = B

(0)
m−1 + (t− (m− 1))(B(0)

m −B
(0)
m−1). (63)

The first step is shown in red in the figure below. The map t ∈ [0,∞[7→ B
(0)
t ∈ Rd is continuous and

piece-wise linear.

Figure 2: First two steps of construction of the Brownian Motion

n = 1: define B
(1)
m = B

(0)
m for all m ≥ 1 (i.e., don’t change the value at nodes). At the middle point of

the interval [m− 1,m], define:

B 2m−1
2

:= B
(0)
2m−1

2

+
1

2
X1,m ∀m ≥ 1. (64)

We need to do this, because note that the desired variance is 2m−1
2 , but

B
(0)
2m−1

2

=
1

2
(B

(0)
m−1 +B(0)

m ) = γ0,(m− 3
4
I),

that is, the current variance is off by 1
4I, which explains the need for the correction term 1

2X1,m. Now
note that

L
B

(1)
2m−1

2

=γ
0, 2m−1

2 I
.

Finally, to complete B
(1)
t , we use linear interpolation. Hence, t ∈ [0,∞[7→ B

(1)
t is continuous and piece-

wise linear. But this next step made it more random with more zig zags then B
(0)
t .

Induction: Assume that {B(n)
t | t ≥ 0} is built with all the desired properties:

1. t ∈ [0,∞[7→ B
(n)
t ∈ Rd is continuous and piece-wise linear.

2. L
B

(n)

m2−n

= γ0,m2−nI for all m ≥ 1.

3. ∀m,m′, for all ξ, η ∈ Rd,

E
[
(ξ,B

(n)
m2−n)(η,B

(n)
m′2−n)

]
= 2−n(m ∧m′)(ξ, η) (65)

We will call this property (*).
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We call these three properties (A). Then, for (n+ 1): set B
(n+1)
m2−n = B

(n)
m2−n for all m ≥ 1. As before,

B
(n+1)
(2m−1)2−n−1 = B

(n)
(2m−1)2−n−1 + 2−

n
2
−1Xn+1,m.

Linearly interpolate to completeB
(n+1)
t for all t ≥ 0. Now we need to check that this inductive construction

satisfies (A). We only need to check (*). Given ξ, η ∈ Rd, k, k′ ≥ 1, k < k′,

• If both k and k′ are even, i.e., if k = 2m and k′ = 2m′ for some m < m′, then (*) is reduced to the

assumption given on {B(n)
t | t ≥ 0} (the old nodes).

• If k = 2m and k′ = 2m′ − 1, with 1 ≤ m < m′, then:

E
[
(ξ,B

(n+1)
k2−n−1)(η,B

(n+1)
k′2−n−1)

]
= E

[
(ξ,B

(n)
m2−n)(η,B

(n)
(2m′−1)2−n−1 + 2−

n
2
−1Xn+1,m′)

]
=

1

2

(
2−n(m ∧ (m′ − 1)) + 2−n(m ∧m′)

)
(ξ, η)

= 2−nm(ξ, η)

= k2−n−1(ξ, η).

• The other cases are left as an exercise: the computation is exactly identical to what’s been done
above.

1. k = 2m− 1, k′ = 2m′ with m ≤ m′.
2. k = 2m− 1, k′ = 2m′ − 1, with m ≤ m′.

Next, we prove the convergence of {B(n)
t | t ≥ 0} as n→ ∞. For all L ≥ 1, Consider:

||B(n+1)
· −B

(n)
· ||U,[0,2L] = max

1≤m≤2n+L

∣∣∣B(n+1)
(2m−1)2−n+1 −B

(n)
(2m−1)2−n+1

∣∣∣
= 2−

n
2
−1 max

1≤m≤2n+L
|Xn+1,m|

Taking the expectation of both sides,

E
[
||B(n+1)

· −B
(n)
· ||U,[0,2L]

]
≤ 2−

n
2
−1

(
E
[

max
1≤m≤2n+L

|Xn+1,m|4
]) 1

4

≤ 2−
n
2
−1

E

2L+n∑
m=1

|Xn+1,m|4
 1

4

≤ C · 2−
n
2
−1(2L+n)

1
4

= C2
L
4 2−12−

n
4 ,

which decays exponentially fast. Applying (Markov) and (BC) ,

P
(
||B(n+1)

· −B
(n)
· ||U,[0,2L] > 2−

n
8 i.o.

)
= 0.

Hence, there exists an Ω′ ⊆ Ω, P (Ω′) = 1, such that for all ω ∈ Ω′,

Bt(ω) := lim
n→∞

B
(n)
t (ω)

exists and the convergence is uniform over any compact set. Hence, the map t ∈ [0,∞[7→ Bt(ω) ∈ Rd is
continuous.
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Finally, one needs to check that the path B = {Bt | t ≥ 0} is a standard Brownian motion. Note
that, for all t,

Bt = lim
n→∞

B
(n)
t = lim

n→∞
B

(n)
⌊t⌋n ,

where ⌊t⌋n = (m−1)2−n if (m−1)2−n ≤ t < m2−n. It’s straightforward to check that for all 0 ≤ r ≤ s < t,
for all ξ1, ξ2 ∈ Rd,

E
[
ei(ξ1,Br)+i(ξ2,Bt−Bs)

]
= lim

n→∞
E
[
e
i(ξ1,B

(n)
⌊r⌋n

)
e
i(ξ2,B

(n)
⌊t⌋n

−B
(s)
⌊s⌋n

)
]

= lim
n→∞

e−
1
2
|ξ1|2⌊r⌋ne−

|ξ|2
2

(⌊t⌋n−⌊s⌋n)(IH)

= e−
|ξ1|

2

2
re−

|ξ2|
2

2
(t−s).

Corrolary 6. If {Bt | t ≥ 0} is a Brownian Motion, then t ∈ [0,∞[7→ Bt ∈ Rd is continuous.

Before moving on, we will summarize what we have just done. We constructed {Bt} a Levy process
associated with γ0,I . It’s standard since B0 = 0. The following three notions are equivalent.

• ∀ 0 ≤ r ≤ s ≤ t, Bt −Bs is independent of Br, and

LBt−Bs = γ0,(t−s)I . (66)

• ∀ k ≥ 1, 0 ≤ t1 ≤ t2 ≤ ... ≤ tk,

L(Bt1,...,Btk) = γ0,C(t1,...,tk), (67)

where C(t1, ..., tk) = (tj∧j′Id×d)j,j′=1,..,k.
• {Bt | t ≥ 0} is a Gaussian Process such that ∀ η and ξ ∈ Rd, ∀ t, s ≥ 0 with:

1. E [(Bt, ξ)Rd ] = 0 (expectation function).
2. cov((Bt, ξ), (Bs, ξ) = (t ∧ s)(ξ, ν) (covariance function).

{Xt} is a Gaussian process if any finite-dimensional distribution is a multivariate Gaussian distribution.
From Levy’s Construction of Brownian motion, we got:

• ∀ n ≥ 0, {B(n)
t | t ≥ 0} is continuous and piece-wise linear a.s., Bt = limn→∞B

(n)
t and the

convergence is uniform on compact sets.
• a.s. t ∈ [0,∞[7→ Bt ∈ Rd is continuous.

Remark. Levy’s Construction of Brownian Motion (B.M.) is an “outward” construction, i.e., we start
with “nice” functions (continuous piece-wise linear) and obtain B.M. through convergence (so we go from
a small class of functions to something more general). There is also an “inward construction”: start with
something bigger, then zoom into something smaller. It is done as follows:

1. Start with the construction of the desired probability measures on (Rd)[0,∞[. Recall that this notation
is the collection of all f : [0,∞[→ R.

2. Confirm that this probability measure is in fact supported on a smaller function space, that is,
C([0,∞[;Rd) = C([0,∞[).

This will be done in two tasks.

Task 1: Follow the steps below to construct the distribution of Brownian motion on all functions (Rd)[0,∞[,

i.e., construct a probability measure µ on ((Rd)[0,∞[,Σ
[0,∞[

Rd ) such that for all 0 ≤ r ≤ s ≤ t, τt − τs (the
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projection mappings) and τr are independent under µ, and Lτt−τs = γ0,(t−s)I under µ. Recall how the
projection maps are defined as: given a time t, the projection mapping does:

τt : (Rd)[0,∞[ → Rd

f ∈ (Rd)[0,∞[ → τt(f) = f(t) ∈ Rd.

is viewed as a random variable on (Rd)0,∞[ under µ.

Guidelines.
Step 1: Set Σ0 =

{⋃L
l=1 Sl | L ≥ 1, S′

ls are disjoint cylinder sets of (Rd)[0,∞[
}
. Note that S is a cylinder

set if there exists finitely-many time-stamps 0 ≤ t1 ≤ t2 ≤ ... ≤ tk, and there exist B1, ..., Bk ∈ B(Rd)
Borel sets such that S =

⋂k
j=1 τ

−1
tj

(Bj), i.e.,

S = {f ∈ (Rd)[0,∞[ | f(tj) ∈ Bj ∀ 1 ≤ j ≤ k}.

It’s straightforward to check that Σ0 is an algebra and σ(Σ0) = Σ
[0,∞[

Rd . Define µ0 on Σ0 such that if

Sl =
⋂kl

j=1 τ
−1

t
(l)
j

(B
(l)
j ) for some 0 ≤ t

(l)
1 ≤ ... ≤ t

(l)
kl

and B
(l)
1 , ..., B

(l)
kl

∈ B(Rd). Define:

µ0

(
L⋃
l=1

Sl

)
:=

L∑
k=l

γ
0,C(t

(l)
1 ,...,t

(1)
kl

)
(B

(l)
1 ×B

(l)
2 × ...×B

(l)
kl
). (68)

Recall,

C(t
(l)
l , ..., t

(l)
kl
) = (t

(l)
j∧j′Id×d)j,j′=1,...,k.

Verify that µ0 is consistent on Σ0 and µ0 is additive.

Step 2: Show that µ0 is continuous at ∅.

By Caratheodory’s Extension Theorem, we know that µ0 can be uniquely extended to a measure µ

on Σ
[0,∞[

Rd such that if f = {f(t) | t ≥ 0} ∈ (Rd)[0,∞[ is sampled under µ, then f is a standard B.M.

Task 2. Give a rigorous proof of Kolmogorov’s Continuity Theorem.

Theorem 16 (Kolmogorov’s Continuity Theorem). Suppose that T > 0 and {Xt | t ∈ [0, T ]} is a
stochastic process defined on some probability space (Ω,F ,P) such that Xt ∈ Rd for all t ∈ [0, T ]. If there
exists a p ≥ 1, C > 0, and r > 0 such that:

(E [|Xt −Xs|p])1/p ≤ C|t− s|
1
p
+r
, (69)

for all t, s ∈ [0, T ] (this is called the intrinsic metric), then there exists a stochastic process {X̃t | t ∈
[0, T ]} on (Ω,F ,P) such that X̃ is a modification of X, i.e., for every t ∈ [0, T ], X̃t = Xt almost surely,
and for all α ∈ [0, r[,

E

[
sup

0≤s,t≤T

|X̃t − X̃s|
|t− s|α

]
<∞. (70)

In particular,

Mα,T := sup
0,≤s,t≤T

|X̃t − X̃s|
|t− s|α

<∞ almost surely. (71)

In other words, almost surely {X̃t | t ∈ [0, T ]} as a path is α-Holder continuous.
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Intuition on α-Holder continuous:

1. If α = 1, α-Holder continuity is the same as Lipschitz Continuous.
2. If ḟ is bounded, then f is 1-Holder continuous.

(a) We should view α as a guage which tells us how continuous f is; the higher α, the more
continuous f is.

Corrolary 7. If {Bt | t ≥ 0} is a standard Brownian motion, then for every α ∈
]
0, 12
[
a.s. {Bt | t ≥ 0}

as a path is α-Holder continuous.

Proof. For all 0 ≤ s ≤ t, we have that E
[
|Bt −Bs|2

]
= (t− s)d. Since this is a Gaussian process, for all

n ∈ N, there exists a Cn,d > 0 such that

E
[
|Bt −Bs|2n

]
≤ Cn,d|t− s|n.

(This follows since it’s a fact about the Gaussian distribution). In this expression, apply (Kolmogorov’s
Continuity Theorem) . Set p = 2n, r = 1

2−
1
2n . Then, apply (Kolmogorov’s Continuity Theorem) .

For all α ∈
]
0, 12 − 1

2n

[
,

E

[
sup

0≤t,s≤T

|B̃t − B̃s|
|t− s|α

]
<∞,

where B̃ is a modification of B. Since n is arbitrary, 1
2−

1
2n can be arbitrarily close to 1

2 ⇒ α ∈
]
0, 12 − 1

2n

[
can reach arbitrarily close to 1

2 . Hence, for all α ∈
]
0, 12
[
, there exists a modification of Brownian motion B̃

ofB such that B̃ is α-Holder continuous. WLOG, we assume that {Bt | t ≥ 0} is just that modification.

Theorem 17. Let {Bt} be a standard B.M. on (Ω,F ,P). Then, ∀ α > 1
2 ,

P

(
∃ S ≥ 0 s.t. lim sup

t↓s

|Bt −Bs|
|t− s|α

<∞

)
= 0. (72)

In particular, it implies that almost surely {Bt | t ≥ 0} is nowhere differentiable.

Proof. It’s sufficient to focus on {Bt | t ∈ [0, 1]}. Set:

E :=

{
∃ s ∈ [0, 1] s.t. lim sup

t↓s

|Bt −Bs|
|t− s|α

<∞

}
(73)

The goal is to show that P (E) = 0. If E “happens”, there exists an ∈ [0, 1], there exists a δ, A > 0 such
that for all t ∈]s, s+ δ[,

|Bt −Bs| ≤ A|t− s|α ⇒ ∀t, t′ ∈]s, s+ δ[, |Bt −Bt′ | ≤ A(|t− s|α + |t′ − s|α)(∗).

Given n ≥ 1, divide [0, 1] into n segments. Given an L ≥ 1, there exists an N ≥ 1 such that for all n ≥ N ,
there are at least L + 1 nodes of 1

nZ inside ]s, s + δ[. Choose m ∈ {0, 1, ..., n} such that m−1
n ≤ s but ∀

0 ≤ l ≤ L, m+l
m ∈]s, s+ δ[ (i.e., the first one is in the interval). Then, by (*), for all 0 ≤ l ≤ L− 1,∣∣∣Bm+l+1

n
−Bm+l

n

∣∣∣ ≤ 2A

(
L+ 1

n

)α

(74)
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Therefore,

E ⊆
∞⋃

A=1

∞⋃
N=1

∞⋂
n=N

∞⋃
m=0

L−1⋂
l=0


∣∣∣Bm+l+1

n
−Bm+l

n

∣∣∣ ≤ 2A

(
L+ 1

n

)α

︸ ︷︷ ︸
:=En,l


The

∣∣∣Bm+l+1
n

−Bm+l
n

∣∣∣ has distribution γ0, 1
n
I . The increments are independent, and so for all A ≥ 1, for

all N ≥ 1,

P

( ∞⋂
n=N

n⋃
m=0

L⋂
l=0

En,l

)
≤ lim

n→∞
n

(
γ0, 1

n
I

(
B

(
0, 2A

(
L+ 1

n

)α)))L

≤ lim
n→∞

Cd,L,A,αn
1+(1/2−α)dL

Since α > 1
2 ,
(
1
2 − α

)
is negative, and we can choose L large enough such that (α − 1/2)dL > 1 ⇒ the

power of n is negative. Hence,

lim
n→∞

n1+(1/2−α)dL = 0 ⇒ P (E) = 0.

Q: What if α = 1
2?

If α = 1
2 , then in fact, for all s > 0,

P

(
lim sup

t↓s

|Bt −Bs|√
t− s

= +∞

)
= 1,

which implies that there is no 1
2 -Holder Continuity.

Step # 3: Construct a Levy process associated with γ0,C

Such a process is given by {
√
CBt | t ≥ 0}.

Given µ ∈ I(Rd), assume that µ = πm,C,M for some m ∈ Rd, C ≥ 0, M ∈ M2. We know how to
construct a Levy Process associated with µ. For all ξ ∈ Rd,

µ̂(ξ) = exp

i(ξ,m)− 1

2
(ξ, Cξ)︸ ︷︷ ︸
CtBt

+

∫
Rd

(
ei(ξ,y) − 1− χB(0,1)(y)i(ξ, y)

)
M(dy)︸ ︷︷ ︸

XJ
t

 . (75)

Given (Ω,F ,P), let {Bt | t ≥ 0} be a standard Brownian Motion on Ω and {XJ
t | t ≥ 0} be a Levy Process

associated with π0,0,M and {Bt | t ≥ 0} and {XJ
t | t ≥ 0} are independent. Then, for every t ≥ 0,

Xt = mt︸︷︷︸
(1)

+
√
CBt︸ ︷︷ ︸
(2)

+ XJ
t︸︷︷︸

(3)

, (76)

is a Levy process associated with µ = πm,C,M . We call the term (1) the Linear Drift, (2) Diffusion,
and (3) the Jump.

Remarks.
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• Let j(t, ·, X) be the jump measure of {Xt | t ≥ 0}. Then, for all t ≥ 0,

j(t, ·, X) = j(t, ·, XJ).

• If t ∈ [0,∞[→ Xt ∈ Rd is continuous, then M = 0 (i.e., there is no jump component).
• If t ∈ [0,∞[→ Xt ∈ Rd has locally bounded variation, i.e., ||X||var,[0,t] < ∞ for all t ≥ 0 almost

surely, then M ∈ M1(Rd) and C = 0) (no diffusion component).

2.3 Classical Wiener Measure

Given (Ω,F ,P), let Bt be a standard Brownian Motion, {Bt | t ≥ 0} on Ω. Then, for all ω ∈ Ω,
t ∈ [0,∞[7→ Bt(ω) ∈ Rd is continuous, i.e., B·(ω) ∈ C([0,∞[;Rd) =: C([0,∞[). View the mapping
B : ω ∈ Ω 7→ B·(ω) ∈ C([0,∞[) as a random variable on Ω. then, the distribution of B·, LB, is a

probability measure on (C([0,∞[),Σ
[0,∞[
C ), where

Σ
[0,∞[
C := σ({τt | t ≥ 0}). (77)

This measure is called the classical Wiener Measure, denoted by W.

• If ϕ ∈ C([0,∞[) is sampled under W, then {ϕ(t) | t ≥ 0} is a standard Brownian motion.
• If 0 ≤ r ≤ s ≤ t, then under W, τt − τs is independent of τr, and τt − τs has distribution γ0,(t−s)I .
• Note:

W ({ϕ ∈ C([0,∞[})) | ϕ(0) = 0}) = 1,

W ({ϕ ∈ C([0,∞[) | ϕ is nowhere differentiable}) = 1.

Proposition 13 (Invariance of Brownian Motion). Let {Bt | t ≥ 0} be a Brownian Motion on (Ω,F ,P).
Then, W is invariant under the following transformations.

Brownian Motion Perspective Wiener Measure Perspective

1. Scaling. For all c ≥ 0,
{

1√
c
Bct | t ≥ 0

}
is a

standard Brownian motion. (Check it by writing
the characteristic function).

1. Scaling. For every C > 0, Sc : φ ∈
C([0,∞[) → Sc(φ) ∈ C([0,∞[) such that ∀
t ≥ 0, Sc(φ)(t) =

1√
c
φ(ct).

2. Time-Inversion. If B̃0 = 0 and B̃t = tB 1
t
,

for all t ≥ 0, then B̃t is a standard Brownian
motion

2. Time-Inversion. Let I : φ 7→ I(φ) such
that I(φ)(0) ≡ 0, then I(φ)(t) = tφ(t) for all
t ≥ 0.

3. Time-Reversal. Given T > 0, {BT −
BT−t | t ∈ [0, T ]} is a standard B.M. on [0, T ].

3. Time-Reversal

4. Symmetry. {−Bt | t ≥ 0} is again a stan-
dard B.M.

4. Symmetry

Time-inversion is an important property since it helps us link behaviour near time zero to large time
behaviour.

3 Continuous Time-Martingales

Definition 20 (Filtration / Right Continuous / Left Continuous). Let (Ω,F ,P) be a probability space.

• A collection of sigma algebras {Ft | t ≥ 0} is a filtration if for all t, Ft is a sub-sigma-algebra of
the underlying σ-algebra, and for all 0 ≤ s ≤ t, Fs ⊆ Ft .

• Given a filtration {Ft | t ≥ 0}, we set:
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1. Ft+ :=
⋂

s>tFs for all t ≥ 0 (“looking into the immediate future”)
2. F0− := F0 and Ft− = σ

(⋃
s<tFs

)
(“the immediate past”). Recall that the union might not

be a sigma-algebra, so we need to generate it.

• {Ft | t ≥ 0} is right-continuous if Ft = Ft+ if for all t. In words: the immediate future is the
same as the present.

• {Ft | t ≥ 0} is left-continuous if Ft = Ft− for all t. In words: the immediate past is the same as
the present.

Definition 21 (Adapted to a Filtration and Progressively Measurable). Let (Ω,F , {Ft | t ≥ 0},P) be a
filtered space and {Xt | t ≥ 0} a stochastic process on Ω.

• We say that {Xt | t ≥ 0} is adapted with respect to a filtration if Xt ∈ mFt for all t > 0.
• {Xt | t ≥ 0} is progressively measurable with respect to {Ft | t ≥ 0} if for all t ≥ 0, the function
(s, ω) ∈ [0, T ]× Ω 7→ Xt(ω) ∈ Rd is measurable with respect to B([0, T ])×Ft.

Remark. If {Xt | t ≥ 0} is adapted, then
∫ t
0 |Xs|ds may NOT be measurable with respect to Ft. If

{Xt | t ≥ 0} is progressively measurable, then
∫ t
0 |Xs|ds ∈ mFt (by Fubini’s Theorem).

Proposition 14. Let {Xt | t ≥ 0} be a stochastic process with RCLL paths. Then, if {Xt | t ≥ 0} is
adapted with respect to some filtration {Ft | t ≥ 0} , then it is progressively measurable with respect to
{Ft | t ≥ 0}.

Proof. For all t ≥ 0, for all (s, ω) ∈ [0, t] × Ω, Xs(ω) = limn→∞X⌈s⌉n(ω), where ⌈s⌉n = m2−nt if
s ∈](m − 1)2−nt,m2−nt]. It suffices to show that for every n ≥ 1 (s, ω) 7→ X⌈s⌉n(ω) is measurable with

respect to B([0, t[)×Ft. However, for all B ∈ B(Rd),

{(s, ω) ∈ [0, t[×Ω | X⌈s⌉n(ω) ∈ B} = {0} ×X−1
0 (B)

⋃[
2n⋃

m=1

]
(m− 1)2−nt,m2−nt

]
×X−1

m2−nt
(B)

]
∈ B([0, t[)×Ft.

Definition 22 (Natural Filtration). Let {Xt | t ≥ 0} be a stochastic process on (Ω,F ,P). Then, for
every t ≥ 0, the natural filtration associated to the process {Xt | t ≥ 0} is:

Fs
t := σ({Xs | s ∈ [0, t]}). (78)

Hence, {FX
t | t ≥ 0} is the natural filtration associated to {Xt | t ≥ 0} and {Xt | t ≥ 0} is adapted to its

natural filtration.

Next homework: If {Xt | t ≥ 0} is continuous, then {FX
t | t ≥ 0} is left-continuous.

Definition 23 (Stopping and Optional Times). Given a filtered space (Ω,F , {Ft | t ≥ 0},P), let τ : Ω →
[0,∞] be a random variable.

1. τ is a stopping time with respect to a filtration if, for all t ≥ 0, {τ ≤ t} ∈ Ft.
2. τ is an optional time with respect to a filtration if, for all t ≥ 0, {τ < t} ∈ Ft.

Proposition 15. We have the following two relations between optional times and stopping times.

1. If τ is a stopping time with respect to the filtration {Ft | t ≥ 0}, then τ is also an optional time
with respect to {Ft | t ≥ 0}.

2. τ is an optional time with respect to {Ft | t ≥ 0} ⇐⇒ τ is a stopping time with respect to
{Ft+ | t ≥ 0}.
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Proof. 1. For all t ≥ 0,

{τ < t} =
∞⋃
n=1

{
τ ≤ t− 1

n

}
︸ ︷︷ ︸

∈F
t− 1

n
⊆Ft

∈ Ft, (79)

which shows that τ is an optional time.
2. “⇒”: Write:

{τ ≤ t} =

∞⋂
n=1

{τ < t+
1

n
}︸ ︷︷ ︸

∈F
t+ 1

n

(τ is an optional time). (80)

For all s > t, there exists an N sufficiently large such that for all n ≥ N , t+ 1
n < s. Hence, we have

the following set equality:

∞⋂
n=1

{
τ < t+

1

n

}
=

∞⋂
n=N

{
τ < t+

1

n

}
︸ ︷︷ ︸

∈F
t+ 1

n
⊆Fs

∈ Fs.

Hence, {τ ≤ t} ∈
⋂

s>tFs = Ft+ .

“⇐”: for all t > 0, {τ < t} =
⋃∞

n=1

{
τ ≤ t− 1

n

}
︸ ︷︷ ︸

∈F
(t− 1

n)
+

.

For all n ≥ 1,

F
(t− 1

n)
+ =

⋂
s>t− 1

n

Fs =
⋂

t− 1
n
<s≤t

Fs ⊆ Ft.

This shows that {τ < t} ∈ Ft.

Proposition 16. Properties about stopping times:

1. If τ1 and τ2 are two stopping times with respect to {Ft | t ≥ 0}, then τ1 ∧ τ2, τ1 ∨ τ2, τ1 + τ2 are all
stopping times with respect to the same filtration.

2. If {τn | n ≥ 1} is a sequence of stopping times with respect to {Ft}, then so is supn τn.
3. Given any t > 0 (constant), τ ∧ t and τ ∨ t are both stopping times.

Proof. Proof that τ1 + τ2 is a stopping time: the proof strategy is to insert a rational number. For all
t ≥ 0, one has:

{τ1 + τ2 > t} = {τ1 > t} ∪ {τ1 ≤ t, τ1 + τ2 > t}
= {τ1 > t} ∪ {τ2 > t− τ1}

= {τ1 > t}︸ ︷︷ ︸
∈Ft

∪
⋃

q∈Q∩[0,t]

{q < τ1 < t}︸ ︷︷ ︸
∈Ft

∩{τ2 > t− q}︸ ︷︷ ︸
Ft−q⊆Ft

∈ Ft.

Rest: exercise.
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Definition 24. Let {Xt | t ≥ 0} be a progressive, measurable stochastic process, and let B ∈ B(Rd). Set
hb : Ω → [0,∞] by the following rule: for all ω ∈ Ω,

hb(ω) := inf{t ≥ 0 | Xt(ω) ∈ B}. (81)

hb is called the hitting time of the set B.

Homework problem.

1. If {Xt | t ≥ 0} is RCLL and B is open, then hb is an optional time with respect to {Ft}.
2. If {Xt | t ≥ 0} is continuous and if B is closed, then hb is a stopping time with respect to {Ft}.

Definition 25 (Sigma Algebra Associated with a Stopping Time). Given a stopping time τ , define the
following collection of sets:

Fτ := {A ∈ F | A ∩ {τ ≤ t} ∈ Ft ∀ t ≥ 0}. (82)

Fτ is the σ-algebra associated with τ .

Proposition 17. If τ1 and τ2 are two stopping times with respect to the same filtration {Ft | t ≥ 0},
then:

1. τ1 ≤ τ2 ⇒ Fτ1 ⊆ Fτ2 .
2. Fτ1∧τ2 = Fτ1 ∩ Fτ2 .
3. {τ1 < τ2}, {τ1 > τ2}, {τ1 = τ2} ∈ Fτ1∧τ2 .
4. For all t ≥ 0, ∀A ∈ Fτ1 , A ∩ {τ1 ≤ t} ∈ Fτ1∧t.

Definition 26. If {Xt | t ≥ 0} is progressively measurable with respect to {Ft | t ≥ 0} and τ is a stopping
time with respect to {Ft} for all ω ∈ Ω, then define:

Xτ (ω) := χ{τ<∞}(ω) ·Xτ(ω)(ω) + χ{τ=∞}(ω)χ{limτ→∞ Xτ exists}(ω) lim
τ→∞

Xτ (ω). (83)

Proposition 18. We have the following properties about Xτ :

1. Xτ is measurable with respect to Ft.
2. the stopped process {Xt∧τ | t ≥ 0} is progressively measurable with respect to {Ft}.

Proof. • Proof of (ii): for all c > 0, consider:

{(s, ω) ∈ [0, t]× Ω | τ(ω) ∧ s ≤ c} = [0, t]× {ω ∈ Ω | τ(ω) ≤ c} ∪ ([0, t ∧ c]× Ω) ∈ B([0, t])×Ft.

This shows that (s, ω) ∈ [0, t] × Ω 7→ τ(ω) ∧ s is measurable with respect to B([0, t]) × Ft. Hence,
(s, ω) ∈ [0, t]× Ω 7→ Xτ(ω)∧s(ω) is measurable with respect to B([0, t])×Ft.

• Proof of (i): for all B ∈ B(Rd), t ≥ 0,

{Xτ ∈ B} ∩ {τ ≤ t}︸ ︷︷ ︸
τ∧t=τ

= {Xτ∧t ∈ B}︸ ︷︷ ︸
∈Ft

∩{τ ≤ t}︸ ︷︷ ︸
∈Ft

∈ Ft.

This shows that {Xt ∈ B} ∈ Ft.
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Example 3. Let {Bt | t ≥ 0} be a one-dimensional standard B.M. on (Ω,F ,P). Let {Ft | t ≥ 0} be the
natural filtration of {Bt | t ≥ 0}. Given a > 0, set τa := inf{t ≥ 0 | Bt ≥ a} (the hitting time of the B.M.
of [a,∞[. Then, τa is a stopping time. We can investigate the distribution of τa. Set Mt := maxs∈[0,t]Bs

to be the running maximum of Brownian Motion. Then, for all t ≥ 0, we have the following set
inclusion:

{τa ≤ t} =

{
max
s∈[0,t]

Bs ≥ a

}
(84)

Then, since the B.M. has continuous sample paths,

Mt := lim
n→∞

max
0≤m≤2n

Bm2−nt.

For all ε > 0, we have:

P
(

max
0≤m≤2−n

Bm2−nt ≥ a

)
≤ P (Mt ≥ a) .

Define the following set E
(n)
a := max0≤m≤2−n Bm2−nt ≥ a and E

(n)
a−ε := max0≤m≤2−n Bm2−nt ≥ a − ε.

Then, we have the following bounds on P (Mt ≥ a):

lim
n→∞

P
(
E(n)

a

)
≤ P (Mt ≥ a) ≤ lim

n→∞
P
(
E

(n)
a−ε

)
. (85)

Write:

P (Bt ≥ a− ε) = P
(
{Bt ≥ a− ε} ∩ E(n)

a−ε

)
=

2n∑
m=1

P
(
Bt ≥ a− ε,Bj2−nt < a− ε, j = 0, ...,m+ 1, Bm2−nt ≥ a− ε

)
≥

2n∑
m=0

P (Bt −Bm2−nt ≥ 0, ..., Bm2−nt ≥ a− ε)

=

2n∑
m=0

P (Bt −Bm2−nt ≥ 0) · P (...) (by Independence)

=
1

2

2n∑
m=0

P
(
E

(n)
a−ε

)
.

Hence,

P
(
E

(n)
a−ε

)
≤ 2P (Bt > a− ε) ⇒ P (Mt ≥ a) ≤ 2P (Bt ≥ a− ε) .

This takes care of the upper bound. To achieve a lower bound, set:

A(n)
ε :=

2n⋂
n=1

{|Bm2−nt −B(m−1)2nt| ≤ ε}.
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It’s easy to check that limn→∞ P
(
A

(n)
ε

)
= 1 (cut it into sufficiently small pieces). Consider the set:

P
(
{Bt ≥ a+ ε} ∩A(n)

ε

)
= P

(
{Bt ≥ a+ ε} ∩A(n)

ε ∩ E(n)
a

)
=

2n∑
m=0

P
(
Bt ≥ a+ ε,A(n)

ε , Bj2−nt ≤ a, j = 0, ...,m− 1, Bm2−nt ≥ a
)

=
2n∑

m=0

P (Bt −Bm2−nt ≥ 0, ..., )

=
1

2
P
(
E(n)

a

)
Hence, we get that

P
(
E(n)

a

)
≥ 2

(
P (Bt ≥ a+ ε)− P

(
(A(n)

ε )c
))

→ 2P (Bt ≥ a+ ε) as n→ ∞.

This gives us the following bound:

2P (Bt ≥ a+ ε) ≤ P (Mt ≥ a) ≤ 2P (Bt ≥ a− ε) .

Sending ε→ 0, we obtain the desired result, which is called the reflecting principle.

P (Mt ≥ a) = P (τa ≤ t) = 2P (Bt ≥ a) . (86)

Task: adapt the rigorous procedure used to determine the distribution of Mt to determine the joint
distribution of (Mt, Bt).

Instruction: Consider, for every t ≥ 0, ∀ a > 0, for all b < a, ε > 0 small, consider:

P (Mt > a,Bt ≥ b+ ε) and P (Mt ≥ a,Bt ≥ b− e) .

Further, verify that Mt −Bt =︸︷︷︸
(d)

Mt =︸︷︷︸
(d)

|Bt|.

We can now introduce continuous time martingales.

Definition 27 (Martingale). Let {Xt | t ≥ 0} be a stochastic process on some filtered space (Ω,F , {Ft},P)
be progressively measurable with respect to {Ft} and for all t ≥ 0, Xt ∈ R, and Xt ∈ L1(P).

1. Xt is called a martingale with respect to {Ft} if for all t ≥ s ≥ 0:

E [Xt | Fs] = Xs, (87)

i.e., it’s a fair game.
2. Xt is called a submarginale with respect to {Ft} if for all t ≥ s ≥ 0, E [Xt | Fs] ≥ Xs.
3. Xt is called a supermartingale with respect to {Ft} if {−Xt | t ≥ 0} is a sub-martingale.

Remark. If Xt ∈ Rd for all t ≥ 0, then {Xt | t ≥ 0} is a martingale with respect to some filtration

if every component is a martingale: for Xt = (X
(1)
t , X

(2)
t , ..., X

(d)
t ), the component {X(j)

t | t ≥ 0} is a
martingale for all 1 ≤ j ≤ d.

Example 4. (Examples of Continuous-Time Martingales) Let µ ∈ I(Rd), µ = πm,C,M be a Levy System.
Let {Xt | t ≥ 0} be a progressively-measurable process on (Ω,F , {Fn},P) . Then, we have the following
“Martingale Characterization of a Levy Process”: {Xt | t ≥ 0} is a Levy process associated with
πm,C,M ⇐⇒ X0 = 0 and for all ξ ∈ Rd, for all t ≥ 0,

{Et(ξ) := exp (i⟨ξ,Xt⟩ − tℓµ̂(ξ)) | t ≥ 0},

is a martingale with respect to {Ft | t ≥ 0}.
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Proof. “⇒”: for all t ≥ 0,

E [Et(ξ)] = E [E0(ξ)] = 1 ⇒ E
[
ei⟨ξ,X1⟩

]
= eiℓµ̂(ξ)

Now to show its a Levy process: for all 0 ≤ r ≤ s ≤ t, for all ξ1, ξ2 ∈ Rd,

E
[
ei⟨ξ1,Xr⟩ei⟨ξ2,Xt−Xs⟩

]
= E

[
E
[
ei⟨ξ1,Xr⟩ei⟨ξ2,Xt−Xs⟩|Fs

]]
= E

[
ei⟨ξ1,Xr⟩ei⟨ξ2,Xs⟩E

[
ei⟨ξ2,Xt⟩|Fs

]]
= E

[
ei⟨ξ1,Xr⟩

]
e(t−s)ℓµ̂(ξ2)

= erℓµ̂(ξ1)e(t−s)ℓµ̂(ξ2)

“⇒”: Take {Xt | t ≥ 0} to be a Levy process associated with µ. For all 0 ≤ s ≤ t, for all ξ ∈ Rd:

E
[
ei⟨Xt,ξ⟩|Fs

]
= E

[
ei⟨Xt−Xs,ξ⟩|Fs

]
ei⟨Xs,ξ⟩ (by independent increments)

= e(t−s)ℓµ̂(ξ)ei⟨Xs,ξ⟩.

Example 5. Let {Bt | t ≥ 0} be a standard B.M. on Rd. Then, it’s easy to check:

1. B.M. itself is a martingale with respect to the natural filtration, {FB
t | t ≥ 0}.

2. ∀ξ ∈ Rd, {⟨Bt, ξ⟩2 − t||ξ||2 | t ≥ 0} is a martingale.

3. For all ξ ∈ Rd, {e⟨ξ,Bt⟩+ 1
2
t||ξ||2 | t ≥ 0} is a martingale.

4. For all ξ ∈ Rd, {e⟨ξ,Bt⟩− 1
2
t||ξ||2 | t ≥ 0} is a martingale.

Remark. This gives us multiple characterizations of B.M. Assume that {Bt | t ≥ 0} satisfies that B0 ≡ 0,
t ∈ [0,∞[→ Bt is continuous. Then, Bt is a standard B.M. ⇐⇒ (3) is true ⇐⇒ (4) is true ⇐⇒ (1)
and (2) are true.

Proposition 19 (Jensen’s Inequality). Let {Xt | t ≥ 0} be an Rd-valued martingale (or a sub-martingale
with d = 1) on some filtered space and let φ : Rd → R be a convex function (or a convex non-decreasing
function when d = 1) such that φ(Xt) ∈ L1(P) for all t ≥ 0. Then, {φ(Xt) | t ≥ 0} is a sub-martingale
with respect to {Ft}.

The proof is exactly the same as in the discrete case.

Remarks.

• If {Xt | t ≥ 0} is a martingale, then {||Xt||p | t ≥ 0} is a martingale for all p ≥ 1.
• If {Xt | t ≥ 0} is a martingale (or a sub-martingale) and {tn | n ≥ 0} ⊆ [0,∞[ such that tn ↑ ∞ as
n→ ∞, then {Xtn | n ≥ 0} is a martingale/sub-martingale with respect to {Ftn | n ≥ 0}.

We will now generalize the results from the discrete-case from MATH 587 to the continuous case.

Theorem 18 (Martingale Convergence Theorem I). Let {Xt | t ≥ 0} be a 1D (sub)-martingale with
RCLL sample paths and supt≥0 E

[
X+

t

]
<∞. Then, there exists an X∞ ∈ L1 such that Xt → X∞ a.s. as

t→ ∞.

Proof. We need to adapt Doob’s upcrossing inequality. Given a, b ∈ R, a < b, let U[a,b] be the total number
of upcrossings from a to b completed by {Xt | t ≥ 0}. For every n ≥ 0, consider {Ym = Xm2−n | m ≥ 0}.
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Then, {Ym | m ≥ 0} is a (sub)-martingale. Set Un,[a,b] to be the total number of upcrossings from a to b
completed by {Ym | m ≥ 0}. Then, by the RCLL property, Un,[a,b] ↑ U[a,b] as n→ ∞. By (MON) :

E
[
U[a,b]

]
= E

[
Un,[a,b]

]
≤ lim

n→∞
sup
m≥0

E [(Ym − a)+]

b− a
(By (Discrete Doob’s Upcrossing Inequality) )

≤ sup
t≥0

E
[
X+

t

]
+ |a|

b− a

<∞.

This implies that for all a < b, U[a,b] <∞ almost surely which implies that X∞ = limt→∞Xt exists almost
surely. Finally, we see that

E [|Xt|] = 2E
[
X+
]
− E [Xt] ≤ 2E

[
X+

t

]
− E [X0] .

This implies that supt E [|Xt|] <∞ i.e. {Xt | t ≥ 0} is bounded in L1. Finally, this implies:

E [|X∞|] ≤ lim inf
n→∞

E [|Xt|] <∞.

Theorem 19 (Martingale Convergence II). If {Xt | t ≥ 0} is a 1D (sub)-martingale with RCLL sample
paths and {Xt | t ≥ 0} is uniformly integrable, i.e.,

lim
A→∞

sup
t≥0

E [|Xt|; |Xt| > A] = 0, (88)

then there exists an X∞ ∈ L1(P) such that Xt → X∞ a.s. and in L1(P).

Proof. If {Xt | t ≥ 0} is uniformly integrable, then it’s easy to see that {Xt | t ≥ 0} is bounded in L1.
Hence, there exists an X∞ ∈ L1(P) such that Xt → X∞ almost surely. Before proceeding, an important
note of caution:

Remark. in discrete time settings or for a discrete family, convergence in probability and uniform
integrability ⇐⇒ convergence in L1. However, this is no longer true in the continuous-time setting, in
general. But here it will work.

For a contradiction, assume that Xt does not converge to X∞ in L1. Then, there exists a sequence
{Sn | n ≥ 0} ⊆ N ↑ ∞ as n→ ∞ such that XSn does not converge to X∞ in L1 (choose a sub-sequence).
{XSn | n ≥ 0} is uniformly integrable, and XSn → X∞ as n→ ∞. However, with the discrete time-result,
we know that XSn → X∞ in L1, which is a contradiction.

Proposition 20 (Doob’s Maximal Inequality). Let {Xt | t ≥ 0} be a 1D (sub)-martingale with RCLL
sample paths. Then, for all ε > 0, for all T > 0,

P

(
sup

t∈[0,T ]
Xt > ε

)
≤ 1

ε
E

[
XT ; sup

t∈[0,T ]
Xt > ε

]
. (89)

Further, if Xt ≥ 0 for all t ≥ 0 and for some p > 1, Xt ∈ Lp, then:

E

[(
sup

t∈[0,T ]
Xt

)p]1/p
≤ p

p− 1

(
E
[
Xp

T

])1/p
. (90)
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Proof. By RCLL, we have that Ym = Xm2−nT for m = 0, ..., 2n. Then,{
sup

t∈[0,T ]
Xt > ε

}
=

∞⋃
n=0

{
max

0≤m≤2n
Ym > ε

}
.

Therefore,

P

(
sup
[0,T ]

Xt > ε

)
= lim

n→∞
P
(

max
0≤m≤2n

Ym > ε

)
lim
n→∞

≤ 1

ε
E
[
Y2n ; max

0≤m≤2n
Ym > ε

]
(By (Discrete Doob’s Max Ineq) )

=
1

ε
E

[
XT ; sup

t∈[0,T ]
Xt > ε

]
(By (MON) )

Corrolary 8. Let {Xt | t ≥ 0} be a martingale or a non-negative sub-martingale with RCLL sample
paths such that {Xt | t ≥ 0} is uniformly integrable. Then, for all ε > 0,

P
(
sup
t≥0

|Xt| > ε

)
≤ 1

ε
E
[
|X∞|; sup

t≥0
|Xt| > ε

]
. (91)

Proof. For all ε > 0,

P
(
sup
t≥0

|Xt| > ε

)
= lim

T→∞
P

(
sup

t∈[0,T ]
|Xt| > ε

)

≤ lim
T→∞

1

ε
E

|XT |; sup
t∈[0,T ]

|Xt| > ε︸ ︷︷ ︸
∈Ft


≤ lim

T→∞
lim

T<s→∞

1

ε
E

[
|Xs|; sup

t∈[0,T ]
|Xt| > ε

]
(since |Xt| is a sub-martingale)

= lim
T→∞

1

ε
E

[
|X∞|; sup

t∈[0,T ]
|Xt| > ε

]
(since |Xt| → |X∞| in L1(P))

=
1

ε
E
[
|X∞|; sup

t≥0
|Xt| > ε

]
.

Theorem 20 (Martingale Convergence Theorem III). Let {Xt | t ≥ 0} be a martingale (or a non-negative
sub-martingale) on (Ω,F , {Fn},P) with RCLL sample paths. If for some p > 1, supt≥0 E [|Xt|p] <∞ (i.e.,
{Xt | t ≥ 0} is bounded in Lp), then there exists an X∞ ∈ Lp such that Xt → X∞ almost surely and in
Lp.

Proof. By (Martingale CV Theorem II) , there exists an X∞ ∈ L1 such that Xt → X∞ a.s. Hence,
by Fatou’s Lemma,

E [|X∞|p] ≤ lim inf
t→∞

E [|Xt|p] <∞ ⇒ X∞ ∈ Lp.
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For every T > 0, we have:

E

[
sup

t∈[0,T ]
|Xt|p

]
≤
(

p

p− 1

)p

E [|XT |p]

≤
(

p

p− 1

)p

sup
t≥0

E [|Xt|p]

<∞.

This proves that supt∈[0,T ] |Xt|p ∈ Lp. Sending T → ∞, by (MON) ,

E
[
(sup
t≥0

|Xt|)p
]
= lim

T→∞
E

[
(sup
[0,T ]

|Xt|)p
]
<∞.

This shows that supt≥0 |Xt| ∈ Lp. Next, by (DOM) , we get that E [|Xt −X∞|p] → 0 as t → ∞. This
follows from the fact that Xt → X∞ almost surely and we have the following dominating function:

|Xt −X∞|p ≤ Cp

[
sup
t≥0

|Xt|p + |X∞|p
]
.

Next, we want to establish the stopping time theorems.

Proposition 21. Let {Xt | t ≥ 0} be a martingale (or a non-negative sub-martingale) on (Ω,F , {Fn},P) with
RCLL sample paths. (1) Then, for all T > 0,

{Xτ | τ is a stopping time and τ ≤ T},

is uniformly integrable. (2) Furthermore, if {Xt | t ≥ 0} is uniformly integrable, then

{Xτ | τ is a stopping time such that τ <∞ a.s. },

is uniformly integrable.

Proof. (1) Given some n ≥ 1, define Ym := Xm2−n and Gm := Fm2−n for m = 0, 1, 2, .... Then, {Ym | m ≥
0} is a martingale (or a non-negative sub-martingale) with respect to {Gm | m ≥ 0}. Fix a T > 0.
WLOG, assume that T ∈ N. Let τ be a stopping time such that τ ≤ T , and we set k(τ) := m + 1 if
τ ∈ [m2−n, (m+ 1)2−n[ for m ≥ 0. Then:

{k(τ) = m+ 1} = {τ ∈ [m2−n, (m+ 1)2−n[} ∈ F(m+1)2−n =: Gm+1.

Hence, k(τ) is a discrete stopping time with respect to {Gm | m ≥ 0}. In addition,

Y
(n)
k(τ) := X2−n([2nτ ]+1) → Xτ as n→ ∞,

because 2−n([2nτ ]+1) → τ from the right. Recall Discrete Hunt’s Theorem: if τ1 ≤ τ2 ≤M for some
M > 0, then E [Xτ2 |Fτ1 ] = (≥)Xτ1 . Since k(τ) ≤ (τ +1)2n, by discrete-time Hunt’s theorem, we can get:

|Y (n)
k(τ)| ≤ E

[
|Y (n)

2n(T+1)| | Gk(τ)

]
= E

[
|XT+1| | Gk(τ)

]
.
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Since {Y (n)
k(τ) > A} ∈ Gk(τ), for every A > 0:

E
[
|Y (n)

k(τ)| ; |Y
(n)
k(τ)| > A

]
≤ E

[
|XT+1|; |Y (n)

k(τ)| > A
]

≤ E

[
|XT+1|; sup

t∈[0,T+1]
|Xt| > A

]
Sending n→ ∞ from the LHS and applying Fatou’s Lemma, we obtain:

E [|Xτ |; |Xτ | > A] ≤ lim inf
n→∞

E
[
|Y (n)

k(τ)| ; |Y (n)
k(τ)| > A

]
≤ E

[
|XT+1|; sup

t∈[0,T+1]
|Xt| > A

]
.

Hence, taking the supremum over all stopping times τ such that τ ≤ T (call this set W ), we obtain the
following inequality:

sup
W

E [|Xτ |; |Xτ | > A] ≤ E

[
|XT+1|; sup

t∈[0,T+1]
|Xt| > A

]
.

Break the expected value up:

E

[
|XT+1|; sup

t∈[0,T+1]
|Xt| > A

]
≤ E

[
|XT+1|; |XT+1| >

√
A
]
+ E

[
|XT+1|; |XT+1| ≤

√
A and sup

t∈[0,T+1]
|Xt| > A

]

For E
[
|XT+1|; |XT+1| >

√
A
]
, we have that it goes to zero as A→ ∞.

For E
[
|XT+1|; |XT+1| ≤

√
A and supt∈[0,T+1] |Xt| > A

]
, we have that:

E

[
|XT+1|; |XT+1| ≤

√
A and sup

t∈[0,T+1]
|Xt| > A

]
≤

√
AP

(
sup

t∈[0,T+1]
|Xt| > A

)
≤

√
A
1

A
E [|XT+1|] → 0 as A→ ∞.

Hence, we have proven that by taking A sufficiently large,

lim
A→∞

sup
τ∈W

E [|Xτ |; |Xτ | > A] = 0.

Next, assume that {Xt | t ≥ 0} is uniformly integrable. Then, there exists an X∞ ∈ L1 such that
Xt → X∞ a.s. and in L1(P). Then, given any stopping time τ such that τ <∞ a.s., and any T > 0 and
A > 0,

E [|Xτ∧T |; |Xτ∧T | > A] ≤ E
[
|XT+1| ; sup

t≥0
|Xt| > A

]
,

which follows from the previous statements since τ ∧ T ≤ T . Sending T → ∞, by Fatou’s Lemma,

sup
τ | τ is a finite s.t.

E [|Xτ |; |Xτ | > A] ≤ E
[
|X∞|; sup

t≥0
|Xt| > A

]
.

We can follow the same steps as in the above to show that:

lim
A→∞

E
[
|X∞|; sup

t≥0
|Xt| > A

]
= 0.
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Theorem 21 (Hunt’s Theorem). Let {Xt | t ≥ 0} be a martingale (or a non-negative sub-martingale)
with RCLL paths. Let τ1 and τ2 be two stopping times such that τ1 ≤ τ2.

1. If there exists a T > 0 such that τ1 ≤ τ2 ≤ T , then

Xτ1 = (≤)E [Xτ2 | Fτ1 ]

2. If {Xt | t ≥ 0} is uniformly integrable, and τ1 and τ2 are finite almost surely, then

Xτ1 = (≤)E [Xτ2 | Fτ1 ] .

Proof. 1. For n ≥ 1, let Y
(n)
m , Gm, m ≥ 0, k(τj) for j = 1, 2, ... be the same as in the previous proof.

Applying (Discrete Hunt’s Theorem) ,

Y
(n)
k(τ1)

= (≤)E
[
Y

(n)
k(τ2)

| Gk(τ1)

]
.

i.e.,

X2−n([2nτ1]+1) = (≤)E
[
X2−n([2nτ2] +1)|F2−n([2nτ1]+1)

]
.

Hence,

E
[
X2−n([2nτ2]+1)|Fτ1

]
= E

[
E
[
X2−n([2nτ2]+1)

]
|Fτ1

]
= (≤)E

[
X2−n([2nτ1]+1)|Fτ1

]
(by the Tower Property)

As n→ ∞, for j = 1, 2, we get that

2n([2nτj ] + 1) → τj ,

for j = 1, 2 almost surely (this convergence happens pointwise). By the previous proposition, we
get that the {X2−n([2nτj ]+1) | j = 1, 2, n ≥ 0} is uniformly integrable. Hence, this implies that

X2−n([2nτj ]+1) → Xτj in L1(P).

Thus,

E [Xτ2 | Fτ1 ] = (≥)Xτ1 .

2. Now assume that {Xt | t ≥ 0} is uniformly integrable with τ1 ≤ τ2 <∞ a.s. For any T > 0 (WLOG,
assume T ∈ N), by (i) we have that:

Xτ1∧T = (≤)E [Xτ2∧T | Fτ1∧T ] .

For all B ∈ Fτ1 ,

E

Xτ2∧T ;B ∩ {τ1 ≤ T}︸ ︷︷ ︸
∈Fτ1∧T

 = (≥)E [Xτ1∧T ;B ∩ {τ1 ≤ T}] .

As T → ∞, Xτj∧T → Xτj (j = 1, 2) a.s. and in L1(P) (due to the uniform integrability and by the
previous proposition). For j = 1, 2,

|E
[
Xτj∧T ;B ∩ {τj ≤ T}

]
− E

[
Xτj ;B

]
| ≤ E

[
|Xτj∧T −Xτj |

]
+ E

[
|Xτj |;B ∩ {τj > T}

]
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Theorem 22 (Doob’s Stopping Time Theorem). Let {Xt | t ≥ 0} be a martingale or a non-negative sub-
martingale on (Ω,F , {Fn},P) with RCLL sample paths. then, for every stopping time τ (w.r.t. {Ft | t ≥
0}), the process {Xt∧t | t ≥ 0} is a martingale or a non-negative sub-martingale w.r.t. {Ft}.

Proof. For all 0 ≤ s ≤ t < ∞, for all B ∈ Fs, B ∩ {τ > s} ∈ Fs∧τ . Hence, for τ , s ∧ τ ≤ t ∧ τ . Since we
have two stopping times, both of which are bounded by t, (Hunt’s Theorem) ,

E [Xt∧τ |Fs∧τ ] = (≥)Xs∧τ .

Hence, we write:

E [Xt∧τ ;B] = E [Xt∧τ ;B ∩ {τ ≤ s}] + E

Xt∧τ ;B ∩ {τ > s}︸ ︷︷ ︸
∈Fs∧t


= (≥)E [Xτ ;B ∩ {τ ≤ s}] + E [Xs∧τ ;B ∩ {τ > s}]
= E [Xs∧τ ;B] .

Examples of Hunt’s Theorem

Example 6. Let {Bt | t ≥ 0} be a standard one-dimensional B.M. on (Ω,F , {Fn},P) . For a, b > 0, set:

• Ta := inf{t ≥ 0 | Bt ≥ a} (the hitting time of the set [a,∞[).
• T−b := inf{t ≥ 0 | Bt ≤ −b} (hitting time of the set ]−∞,−b]}.

Define the set T := Ta∧T−b. All of these are stopping times. T is the exiting time of the interval ]− b, a[.
Then, we can write Ω as the disjoint union of the following sets:

Ω = {T = Ta} ∪ {T = T−b} = {Ta < T−b} ∪ {Ta > T−b}. (92)

By (Doob’s Stopping Time Theorem) , {Bt∧T | t ≥ 0} is again a martingale, and for every t ≥ 0,
|Bt∧T | ≤ a ∨ b which implies that {Bt∧T | t ≥ 0} is uniformly integrable.

• If t < T , then Bt hasn’t left ]− b, a[⇒ |Bt| ≤ a ∨ b.
• If t ≥ T , then Bt∧T = BT = a or −b.

By (Hunt’s Theorem) ,

E [BT∧T ] = E [B0∧T ] .

Hence, E [BT ] = 0, and so

E [BT ] = aP (T = Ta)− bP (T = Tb) = 0,

and P (T = Ta) + P (T = Tb) = 1. This implies:

P (T = Ta) =
b

a+ b

P (T = T−b) =
a

a+ b
.
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Next: next, we try to compute E [T ].

{B2
t − t | t ≥ 0} (93)

is a martingale, which implies that

{B2
t∧T − (t ∧ T ) | t ≥ 0}

is also a martingale. This implies that for all t ≥ 0,

E [t ∧ T ] = E
[
B2

t∧T
]
,

LHS: limt→∞ E [t ∧ T ] = E [T ] by (MON) . On the RHS,

lim
t→∞

E
[
B2

t∧T
]
= E

[
B2

T

]
= a2P (T = Ta) + b2P (T = T−b) = ab.

The interchanging of the limit and the expected value is justified by (DOM) , with dominating function
supt≥0B

2
t∧T = a2 ∨ b2 <∞. Hence,

E [T ] = ab.

Exercise. Suppose a = b. Determine E
[
e−αT

]
for α ≥ 0. (This will also determine the distribution of

T ). Hint: Consider / look for a martingale that involves ecBt for some c ∈ R.

Prove the following version of the decomposition theorem (Doob Meyer’s Decomposition Theo-
rem): Let {Xt | t ≥ 0} be a non-negative sub-martingale on some filtered space (Ω,F , {Fn},P) with
RCLL sample paths. Then, there exist two stochastic processes {Mt | t ≥ 0} and {At | t ≥ 0} such that
for all t ≥ 0,

Xt = At +Mt. (94)

1. A0 ≡ 0, {At | t ≥ 0} is increasing (i.e., As ≤ At for all s ≤ t) and {At | t ≥ 0} is predictable (i.e.,
At ∈ Ft− , the equivalent notion of this was “pre-visible” in the discrete case) and {At | t ≥ 0} has
RCLL sample paths.

2. {Mt | t ≥ 0} is a martingale with respect to the filtration {Ft | t ≥ 0} with RCLL paths.

Furthermore, the choice of {At | t ≥ 0} and {Mt | t ≥ 0} is unique. In addition,

1. If {Xt | t ≥ 0} has continuous sample paths, then so do {At | t ≥ 0} and {Mt | t ≥ 0}.
2. If {Xt | t ≥ 0} is uniformly integrable, then so is {Mt | t ≥ 0} and supt≥0 E [At] <∞.

Next, we will apply Meyer’s Decomposition Theorem to square-integrable martingales.

Definition 28. Let {Xt | t ≥ 0} be a square integrable martingale on some filtered space (Ω,F , {Fn},P) (so,
Xt ∈ L2) with RCLL sample paths. then, by (Jensen) ’s, {X2

t | t ≥ 0} is a non-negative sub-martingale.
Applying Meyer’s Decomposition Theorem,there exists a process {At | t ≥ 0} with A0 ≡ 0 increasing and
predictable such that {X2

t − At | t ≥ 0} is a martinale. We denote by ⟨X⟩t = At and call {⟨X⟩t | t ≥ 0}
to be the quadratic variation of {Xt | t ≥ 0}.

Remark 1. We have that ⟨X⟩0 ≡ 0, t 7→ ⟨X⟩t is increasing and RCLL, and for all t ≥ 0, E [⟨X⟩t] =
E
[
X2

t

]
. If {Xt | t ≥ 0} is bounded in L2, then ⟨X⟩∞ = limt→∞⟨X⟩t ∈ L1 and ⟨X⟩t 7→ ⟨X⟩∞ a.s. and in

L1.
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Example 7. If {Bt | t ≥ 0} is a standard B.M., then ⟨B⟩t = t for all t ≥ 0. If {Nt | t ≥ 0} is a simple
Poisson Process with rate 1, then {Nt − t | t ≥ 0} is a square-integrable martingale. Let’s find another
martingale: all 0 ≤ s ≤ t, we have:

E
[
(Nt − t)2 | Fs

]
= E

[
(Nt −Ns − (t− s) +Ns − s)2 | Fs

]
= E

[
(Nt −Ns − (t− s))2

]
+ 2E [(Nt −Ns − (t− s))] (Ns − s) + (Ns − s)2

= (t− s) + (Ns − s)2.

Re-arranging shows that {(Nt − t)2 − t | t ≥ 0} is a martingale. Hence, if X = Nt − t, then ⟨X⟩t = t.

Corrolary 9. Let X be a square integrable martingale with continuous sample paths. Then, X is a B.M.
⇐⇒ X0 = 0 and ⟨X⟩t = t for all t ≥ 0.

Theorem 23. Let {Xt | t ≥ 0} be a square integrable martingale on (Ω,F , {Fn},P) with continuous
sample paths. Suppose that for all ω ∈ Ω, t 7→ ⟨X⟩t(ω) is strictly increasing, and limt→∞⟨X⟩t(ω) = ∞.
Then, there exists a stochastic process {Bs | s ≥ 0} on (Ω,F ,P) and a filtration {Gs | s ≥ 0} with Gs ⊆ F
for all s ≥ 0 such that {Bs | s ≥ 0} is a standard Brownian Motion with respect to {Gs | s ≥ 0} and
Xt = X0 +B⟨X⟩t for all t ≥ 0, i.e., for all ω ∈ Ω,

Xt(ω) = X0(ω) +B⟨X⟩t(ω)(ω). (95)

Roughly speaking, this means that there is a “clock” such that the process is a shifted Brownian
Motion.

Proof. WLOG, set X0 = 0. By assumption, for all ω ∈ Ω, t 7→ ⟨X⟩t(ω) is strictly increasing and
continuous ⇒ there exists an s 7→ Ss(ω) inverse function of ⟨X⟩(ω) such that s 7→ Ss(ω) and Ss(ω) ↑ ∞
and for all t ≥ 0, Ss(ω) = t ⇐⇒ ⟨X⟩t(ω) = s. Moreover, for every t ≥ 0, s ≥ 0,

{ω | Ss(ω) ≤ t} = {ω | ⟨X⟩t(ω) ≤ s} ∈ Ft.

Next we define the filtration: for every s ≥ 0, set Gs := FSs . Since Ss ≤ Ss′ for every s ≤ s′, we have that
Gs ⊆ Gs′ which shows that {Gs | s ≥ 0} is a filtration. For every ω ∈ Ω, for every s ≥ 0, set:

Bs(ω) := XSs(ω)(ω). (96)

Then, for all s ≥ 0, Bs is measurable with respect to FSs = Gs. This implies that {Bs | s ≥ 0} is adapted
with respect to {Gs | s ≥ 0}. OTOH, s 7→ Bs is continuous, so from adaptedness we get that {Bs | s ≥ 0}
is progressively measurable with respect to {Gs | s ≥ 0}. By definition, for every t ≥ 0, for every ω ∈ Ω,

Xt(ω) = B⟨X⟩t(ω)(ω). (97)

We only need to check that {Bs | s ≥ 0} is a B.M. now. By continuity of the sample paths, it suffices to
show that {Bs | s ≥ 0} and {B2

s − s | s ≥ 0} are both martingales. First, observe that

lim
T→∞

XT∧Ss = XSs = Bs,

for every ω ∈ Ω. Then, by (MON) ,

E

[
sup

t∈[0,Ss]
X2

t

]
= lim

T→∞
E

[
sup

t∈[0,T∧Ss]
X2

t

]
≤ 4 lim

T→∞
E
[
X2

T∧Ss

]
≤ 4 lim

T→∞
E
[
X2

T∧Ss

]
= 4 lim

T→∞
E [⟨X⟩T∧Ss ]

≤ 4s.
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This shows that supt∈[0,Ss]X
2
t ∈ L1(P). This shows that XT∧Ss → Bs and in L2 by (DOM) . By using

similar arguments as in the proof of Hunt’s Theorem, we can show that for every s ≤ t, for all A ∈ Fs,

E [Bs;A] = E [Bt;A]

E
[
B2

s − s;A
]
= E

[
B2

t − t;A
]
.

By applying the LIL to B.M., we obtain the following Corollary:

Corrolary 10. Let {Xt | t ≥ 0} be the same as the above. Then,

lim sup
t→∞

Xt√
2⟨X⟩t ln ln⟨X⟩t

= 1 = − lim inf
t→∞

Xt√
2⟨X⟩t ln ln⟨X⟩t

a.s.

Definition 29 (Cross-Variation). Let {Xt | t ≥ 0} and {Yt | t ≥ 0} be two square integrable martingales
on (Ω,F , {Fn},P) with RCLL sample paths. Suppose that for all t ≥ 0, Xt, Yt ∈ R. For every t ≥ 0, set:

⟨X,Y ⟩t :=
1

4
(⟨X + Y ⟩t − ⟨X − Y ⟩t). (98)

This is called the cross-variation of the processes {Xt} and {Yt}.

We have the following remarks about cross-variation.

• ⟨X,X⟩t = ⟨X⟩t.
• ⟨X,Y ⟩t = ⟨Y,X⟩t.
• If {Zt | t ≥ 0} is another square integrable martingale with RCLL sample paths, and for all α, β ∈ R,
then:

⟨αX + βZ, Y ⟩t = α⟨X,Y ⟩t + β⟨Z, Y ⟩t,

i.e., ⟨·, ∗⟩ is bilinear.
• ⟨X,Y ⟩0 ≡ 0.
• t 7→ ⟨X,Y ⟩t has locally bounded total variation, i.e., for all t ≥ 0, ||⟨X,Y ⟩||var,[0,t] <∞.

Proposition 22. {Xt · Yt − ⟨X,Y ⟩t | t ≥ 0} is a martingale with RCLL sample paths.

Proof. For all 0 ≤ s ≤ t, write:

E [XtYt | Fs] =
1

4
E
[
(Xt + Yt)

2 − (Xt − Yt)
2 | Fs

]
This is true, by the following:

E
[
(Xt + Yt)

2 − ⟨X + Y ⟩t | Fs

]
= (Xs + Ys)

2 − ⟨X + Y ⟩s
E
[
(Xt − Yt)

2 − ⟨X − Y ⟩t | Fs

]
= (Xs − Ys)

2 − ⟨X − Y ⟩s

=
1

4

(
(Xs + Ys)

2 − ⟨X + Y ⟩s − ((Xs − Ys)
2 − ⟨X − Y ⟩s)

)
+

1

4
E [⟨X + Y ⟩t − ⟨X − Y ⟩t|Fs]

= XsYs − ⟨X,Y ⟩s + E [⟨X,Y ⟩t | Fs] ,

which proves the desired statement.
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3.1 Probabilistic Approach to PDEs!

Theorem 24 (Another Martingale Characterization of Brownian Motion). Let {Xt | t ≥ 0} be a progres-
sively measurable stochastic process on some filtered space (Ω,F , {Fn},P) with continuous sample paths.
Suppose that Xt ∈ Rd for all t ≥ 0 and that X0 ≡ 0. Then, {Xt | t ≥ 0} is a standard Brownian Motion
⇐⇒ for all φ ∈ C2

b (Rd), {
Eφ

t := φ(Xt)−
1

2

∫ t

0
∆φ(Xs)ds | t ≥ 0

}
,

is a martingale.

Proof. “⇐”: We can use the previous martingale characterization of B.M.: for all j = 1, ..., d, let
ej = (0, 0, ..., 0, 1, 0, ..., 0), where the 1 is in the jth component. Write Xt = (X1

t , ..., X
d
t ). Consider

φ1(X) := ⟨X, ej⟩ for all X ∈ Rd. Then, ∆φ1 ≡ 0. Then, {Xj
t | t ≥ 0} is a martingale.

Consider φ2(X) := ⟨X, ej⟩2 for all X ∈ Rd. We have that ∆φ2 = 2. Then, {(Xj
t )

2 − t | t ≥ 0} is a

martingale. By one of the martingale characterizations of a B.M., this shows that {Xj
t | t ≥ 0} is a

standard 1D Brownian motion.

“⇒”: We will prove this direction for φ ∈ C∞
c (Rd). The statement for general φ ∈ C2

b (Rd) can be
established following an approximation argument. Assume that {Xt | t ≥ 0} is a standard B.M. Then,
for every t > 0, set φt to be the density function of γ0,T I . By direct computation, we have

d

dt
(ϕ ∗ ρt) (x) =

1

2
(∆ϕ ∗ ρt)(x). (99)

One can see this by writing

ϕ ∗ ρt(x) :=
(

1√
2πt

)d ∫
Rd

ϕ(x− y)exp

(
−||y||2

2t

)
dy.

Now observe that, for all 0 ≤ s ≤ t, one has that for Xt a B.M.,

E [ϕ(Xt) | Fs] = E [ϕ(Xt −Xs +Xs) | Fs]

Xt−Xs is independent of Fs by independent increments, and Xs is measurable with respect to Fs. Hence,

=

∫
Rd

ϕ(y +Xs)ρt−s(y)dy

=

∫
Rd

ϕ(Xs − y)ρt−s(y)dy

= (ϕ ∗ ρt−s)(Xs).

Therefore, by the Fundamental Theorem of Calculus, we get that:

E [ϕ(Xt) | Fs] = (ϕ ∗ ρt−s)(Xs) =

∫ t

s

1

2
∆ϕ ∗ ρr−s(Xs)dr + ϕ(Xs).

Therefore, for every A ∈ Fs, we may write:

E [ϕ(Xt);At] = E [ϕ(Xs);A] +

∫ t

s

1

2
E [∆ϕ ∗ ρt−s(Xs);A] dr

= E [ϕ(Xs);A] +

∫ t

s

1

2
E [∆ϕ(Xr);A] dt

= E [ϕ(Xs);A] + E
[
1

2

∫ t

s
∆ϕ(Xr)dr;A

]
.
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The final equality follows from an application of Fubini’s Theorem. This shows that{
ϕ(Xt)−

∫ t
0

1
2∆ϕ(Xr)dr | t ≥ 0

}
is a martingale.

Q: Can we do more? Yes.

Task. Prove the following Martingale Characterization of a Levy Process.

Theorem 25. Assume that µ = πm,C,M ∈ I(Rd) with some Levy System (m,C,M) and let {Xt | t ≥ 0}
be a progressively measurable process on (Ω,F , {Fn},P) with RCLL sample paths. Then, {Xt | t ≥ 0} is
a Levy Process associated with µ ⇐⇒ for all φ ∈ C∞

c (Rd) if

Zϕ
t := ϕ(Xt)−

∫ t

0
Aµϕ(Xs)ds (100)

for all t ≥ 0, where for all x ∈ Rd,

Aµϕ(X) :=
1

2

d∑
i,j=1

Cij∂i∂jϕ(X) +

d∑
j=1

mj∂jϕ(X)+

∫
Rd

ϕ(X + y)− ϕ(X)− χB(0,1)(y)
d∑

j=1

yj∂jϕ(X)

M(dy).

Use the proof of the Levy-Khinchine Formula in the proof, and recall that the generator of the
process {Xt | t ≥ 0} is given by:

Aµϕ(0) := lim
n→∞

n

(∫
ϕ(y)µ 1

n
(dy)− ϕ(0)

)
(101)

Corrolary 11. Let D ⊆ Rd be a bounded, open set, with sufficiently regular (e.g. smooth) boundary
∂D. Let f : ∂D → R be continuous and bounded, and let uf : D → R be the harmonic extension of
f , i.e., uf ∈ C2(D), and

∆uf ≡ 0 on D and uf = f on ∂D. (102)

Then, if {Bt | t ≥ 0} is a standard Brownian Motion in Rd defined on some filtered space (Ω,F , {Fn},P) ,
and for all x ∈ D, we set:

τX := inf{t ≥ 0 | Bt + x ∈ Dc}. (103)

Then, τX is the hitting time of the set Dc, and since that’s a closed set, it is a stopping time. Then,
uf (X) = E [f(BτX + x)]. This is the probabilistic representation of a harmonic function, and
amounts to solving a Dirichlet Problem.

Proof. We assume that uf is defined as uf ∈ C2
b (Rd). Given x ∈ D, define

ϕX(·) = uf (·+ x),

on Rd. Then, ϕX ∈ C2
b (Rd). Therefore,

{
φX(Bt)−

∫ t
0

1
2φX(Bs)ds | t ≥ 0

}
is a martingale. This implies

that, {
φX(Bt ∧ τx)−

∫ τx∧t

0

1

2
∆φX(Bs)ds | t ≥ 0

}
,
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is a martingale. For every s ≤ t ∧ τX , Bs ∈ Dx := {y ∈ Rd | y + x ∈ D}. This implies that

∆φX(Bs) = 0,

and therefore {φX(Bt∧τX ) | t ≥ 0} is a martingale. Furthermore, it’s uniformly bounded and uniformly
integrable. Hence, by (Hunt’s Theorem) ,

E [φX(BτX )] = E [φX(B0)] = E [f(BτX + x)] = uf (X).

Corrolary 12. Let u ∈ C1,2
b ([0,∞[×Rd) be a solution to the heat equation:

∂tu(t, x) =
1

2
∆u(t, x),

for all t > 0, for all x ∈ Rd, with initial condition u(0, x) = g(x). Let {Bt | t ≥ 0} be a standard B.M. on
Rd. Then, for all (t, x) ∈]0,∞[×Rd almost surely,

u(t, x) = E [g(Bt + x)] . (104)

This is the probabilistic interpretation of the solution to the heat equation.

Proof. Given u(t, x) as above, for all t ≥ 0, x ∈ Rd, set

F : (s, y) ∈ [0, t]× Rd 7→ F (s, y) = u(t− s, y + x) ∈ R. (105)

This implies that, for all (s, y) ∈]0, t[×Rd,(
∂s +

1

2
∆

)
F (s, y) = 0. (106)

Therefore, {F (s,Bs) | s ∈ [0, t]} is a martingale. This implies

E [F (t, Bt)] = E [F (0, 0)]

E [g(Bt + x)] = u(t, x).

4 Stochastic Integrals and Ito’s Formula

4.1 Review of Basic Facts of Riemann-Stieljes Integrals

1. Let φ, ψ be two R-valued functions on [0,∞[. If φ ∈ BVloc([0,∞[), i.e., φ has locally-bounded
variation ( ||φ||var,[0,t] <∞) for all t ≥ 0, ψ ∈ C([0,∞[). Then, for all t ≥ 0, ψ is RS-integrable with
respect to φ on [0, t], i.e.,∫ t

0
ψ(s)dφ(s) := lim

L→∞
max
1≤j≤L

|tj − tj−1|
L∑

j=1

ψ(r∗j )(φ(tj)− φ(tj−1)), (107)

where L ≥ 1, 0 = t0 < t1 < ... < tL = t, r∗j ∈ [tj−1, tj [ for 1 ≤ j ≤ L − 1 and r∗L ∈ [tL−1, tL]. The
limit does not depend on the choice of L or the partition {tj , r∗j | 1 ≤ j ≤ L}.
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2. Assume that for every t ≥ 0, ψ is RS-integrable with respect to φ and set:

I(ψ,φ)(t) :=

∫ t

0
ψ(s)dφ(s). (108)

Then,

(a) t ∈ [0,∞[7→ I(ψ,φ)(t) has locally bounded variation and

||I(ψ,φ)||var,[0,t] < ||ψ|||U,[0,t]||φ||var,[0,t]. (109)

(b) If φ is RCLL, then so is I(ψ,φ).
(c) If φ is continuous, then so is I(ψ,φ).

3. If ψ is RS-integrable with respect to φ on [0, t], then φ is also RS-integrable with respect to ψ on
[0, t] and the integration-by-parts formula holds:∫ t

0
φ(s)dψ(s) = φ(t)ψ(t)− φ(0)ψ(0)−

∫ t

0
ψ(s)dφ(s). (110)

Now, we turn to Brownian Motion. The objective is to gradually build up to integrating a Brownian
Motion with respect to a Brownian Motion. Let Bt be a standard B.M. on (Ω,F , {Fn},P) . Assume that
φ ∈ BVloc([0,∞[) ∩ C([0,∞[). Then, for every t ≥ 0, for all ω ∈ Ω, define the following:

I(φ))t(ω) :=

∫ t

0
φ(s)dBs(ω). (111)

This is a RS-integral, and it’s defined path-by-path (the dependence on ω ∈ Ω makes this explicit). Then,
we have the following:

I(φ)t(ω) := φ(t)Bt(ω)−
∫ t

0
Bs(ω)dφ(s). (112)

We call I(φ)t(ω) the Paley-Wiener Integral (with respect to Brownian Motion).

Remarks on PW Integrals.

1. Continuity : for all ω ∈ Ω, t 7→ I(φ)t is continuous.
2. Approximation: we have that I(φ)0 ≡ 0 for all t > 0, for all ω ∈ Ω,

I(φ)t(ω) = lim
n→∞

2n∑
m=1

φ((m− 1)2−nt))(Bm2−nt(ω)−B(m−1)2−nt(ω)). (113)

This limit does not depend on the choice of r∗m ∈ [(m− 1)2−nt,m2−nt[.
3. Progressive Measurability : {I(φ)t | t ≥ 0} is progressively measurable with respect to {Ft | t ≥ 0}.
4. Distribution: Since φ ∈ C([0,∞]), for all t ≥ 0,

∫ t
0 φ

2(s)ds < ∞. For all ξ ∈ |R, we compute the
characteristic function:

E
[
eiξI(φ)t

]
= lim

n→∞
E
[
e
iξ

∑2n

m=1 φ((m−1)2−nt)(Bm2−nt−B(m−1)2−nt)
]

= lim
n→∞

2n∏
m=1

e−
ξ2

2
φ2((m−1)2−nt)2−nt

= lim
n→∞

exp

(
2n∑

m=1

φ2((m− 1)2−nt)2−nt)

(
−ξ

2

2

))

= exp

(
−ξ

2

2

∫ t

0
φ2(s)ds

)
.

Hence, the distribution of I(φ)t is γ0,
∫ t
0 φ2(s)ds.
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5. Independent Increments: for all 0 ≤ s ≤ t,

I(φ)t − I(φ)s =

∫ t

s
φ(r)dBr, (114)

is independent of Fs, and with distribution

γ0,
∫ t
s φ2(r)dr,

so the increments are not necessarily homogeneous !
6. Gaussian Process: The family of PW-integrals {I(φ)t | t ≥ 0} is a Gaussian process with

E [I(φ)t] = 0 ∀t ≥ 0.

For all 0 ≤ s ≤ t,

E [I(φ)tI(φ)s] = E
[
I(φ)2s

]
=

∫ s

0
φ2(r)dr.

Equivalently, {I(φ)t | t ≥ 0} has the same distribution as {B∫ t
0 φ2(r)dr | t ≥ 0} where {Bs | s ≥ 0}

is a standard B.M.
7. Martingale: {I(φ)t | t ≥ 0} is is a square-integrable martingale with continuous sample paths, with

quadratic variation given by:

⟨I(φ)⟩t :=
∫ t

0
φ2(r)dr.

If φ1 and φ2 are two elements in BVloc([0,∞[) ∩ C([0,∞]), then for ever t ≥ 0, I(φ1 + φ2)t =
I(φ1)t + I(φ2)t. The cross-variation of their PW-integrals is given by:

⟨I(φ1)I(φ2)⟩t =
∫ t

0
φ1(r)φ2(r)r.

8. Isometry : for all t ≥ 0,

I : φ ∈ C([0, t]) ∩ L2([0, t]) 7→ I(φ)t ∈ L2(Ω)

is an isometry between two Hilbert spaces, L2([0, t]) and L2(Ω). Since C([0, t])∩BV ([0, t]) is dense
in L2([0, t]), I can be uniquely extended to be an isometry as:

I : L2([0, t]) 7→ L2(Ω).

For all φ ∈ L2([0, t]), there exists a sequence of functions {φn | n ≥ 1} ⊆ C([0, t]) ∩BV ([0, t]) such
that φn → φ in L2([0, t]) and,

I(φ)t := lim
n→∞

I(φn)t,

in the sense of L2 convergence. Then, I(φ)t has distribution γ0,||φ||2
L2([0,t])

. Moreover, {I(φ)t | φ ∈

L2([0, t])} is a centred Gaussian family with covariance

E [I(φ1)tI(φ2)t] = ⟨φ1, φ2⟩L2([0,t]), (115)

for all φ1, φ2 ∈ L2([0, t]).


